82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA double-strand breaks (DSBs) represent the most toxic DNA damage arisen from endogenous and exogenous genotoxic stresses and are known to be repaired by either homologous recombination or nonhomologous end-joining processes. Although many proteins have been identified to participate in either of the processes, the whole processes still remain elusive. Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in gene silencing, cancer development and the maintenance of embryonic and adult stem cells. By screening proteins responding to DNA damage using laser micro-irradiation, we found that PHF1, a human homolog of Drosophila polycomb-like, Pcl, protein, was recruited to DSBs immediately after irradiation and dissociated within 10 min. The accumulation at DSBs is Ku70/Ku80-dependent, and knockdown of PHF1 leads to X-ray sensitivity and increases the frequency of homologous recombination in HeLa cell. We found that PHF1 interacts physically with Ku70/Ku80, suggesting that PHF1 promotes nonhomologous end-joining processes. Furthermore, we found that PHF1 interacts with a number of proteins involved in DNA damage responses, RAD50, SMC1, DHX9 and p53, further suggesting that PHF1, besides the function in PcG, is involved in genome maintenance processes.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          DNA double-strand breaks: signaling, repair and the cancer connection.

          To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ATM and related protein kinases: safeguarding genome integrity.

            Maintenance of genome stability is essential for avoiding the passage to neoplasia. The DNA-damage response--a cornerstone of genome stability--occurs by a swift transduction of the DNA-damage signal to many cellular pathways. A prime example is the cellular response to DNA double-strand breaks, which activate the ATM protein kinase that, in turn, modulates numerous signalling pathways. ATM mutations lead to the cancer-predisposing genetic disorder ataxia-telangiectasia (A-T). Understanding ATM's mode of action provides new insights into the association between defective responses to DNA damage and cancer, and brings us closer to resolving the issue of cancer predisposition in some A-T carriers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex.

              The ataxia-telangiectasia mutated (ATM) kinase signals the presence of DNA double-strand breaks in mammalian cells by phosphorylating proteins that initiate cell-cycle arrest, apoptosis, and DNA repair. We show that the Mre11-Rad50-Nbs1 (MRN) complex acts as a double-strand break sensor for ATM and recruits ATM to broken DNA molecules. Inactive ATM dimers were activated in vitro with DNA in the presence of MRN, leading to phosphorylation of the downstream cellular targets p53 and Chk2. ATM autophosphorylation was not required for monomerization of ATM by MRN. The unwinding of DNA ends by MRN was essential for ATM stimulation, which is consistent with the central role of single-stranded DNA as an evolutionarily conserved signal for DNA damage.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                May 2008
                1 April 2008
                1 April 2008
                : 36
                : 9
                : 2939-2947
                Affiliations
                1Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575 and 2Laboratory of Developmental Genetics, Riken Research Center for Allergy and Immunology, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama 230-0045, Japan
                Author notes
                *To whom correspondence should be addressed. +81 22 717 8465+81 22 717 8470 ayasui@ 123456idac.tohoku.ac.jp
                Article
                gkn146
                10.1093/nar/gkn146
                2396414
                18385154
                f898e8e8-5cdd-4e07-ab6c-c4e94ea1139d
                © 2008 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 December 2007
                : 4 March 2008
                : 17 March 2008
                Categories
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article