44
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Type 2 diabetes genetic association database manually curated for the study design and odds ratio

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The prevalence of type 2 diabetes has reached epidemic proportions worldwide, and the incidence of life-threatening complications of diabetes through continued exposure of tissues to high glucose levels is increasing. Advances in genotyping technology have increased the scale and accuracy of the genotype data so that an association genetic study has expanded enormously. Consequently, it is difficult to search the published association data efficiently, and several databases on the association results have been constructed, but these databases have their limitations to researchers: some providing only genome-wide association data, some not focused on the association but more on the integrative data, and some are not user-friendly. In this study, a user-friend database of type 2 diabetes genetic association of manually curated information was constructed.

          Description

          The list of publications used in this study was collected from the HuGE Navigator, which is an online database of published genome epidemiology literature. Because type 2 diabetes genetic association database (T2DGADB) aims to provide specialized information on the genetic risk factors involved in the development of type 2 diabetes, 701 of the 1,771 publications in the type 2 Diabetes case-control study for the development of the disease were extracted.

          Conclusions

          In the database, the association results were grouped as either positive or negative. The gene and SNP names were replaced with gene symbols and rsSNP numbers, the association p-values were determined manually, and the results are displayed by graphs and tables. In addition, the study design in publications, such as the population type and size are described. This database can be used for research purposes, such as an association and functional study of type 2 diabetes related genes, and as a primary genetic resource to construct a diabetes risk test in the preparation of personalized medicine in the future.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.

          The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030. Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations' population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries. The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age. These findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A navigator for human genome epidemiology.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SNP genotyping: technologies and biomedical applications.

              Single nucleotide polymorphisms (SNPs) are the most frequently occurring genetic variation in the human genome, with the total number of SNPs reported in public SNP databases currently exceeding 9 million. SNPs are important markers in many studies that link sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular bases of diseases. For this reason, over the past several years a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis, yielding a large number of distinct approaches. This article presents a review of SNP genotyping techniques and examines their principles of genotype determination in terms of allele differentiation strategies and detection methods. Further, several current biomedical applications of SNP genotyping are discussed.
                Bookmark

                Author and article information

                Journal
                BMC Med Inform Decis Mak
                BMC Medical Informatics and Decision Making
                BioMed Central
                1472-6947
                2010
                30 December 2010
                : 10
                : 76
                Affiliations
                [1 ]Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
                [2 ]Department of Physiology College of Oriental Medicine, Kyung Hee University, Seoul, Korea
                Article
                1472-6947-10-76
                10.1186/1472-6947-10-76
                3022779
                21190593
                f8a9c0d5-bf78-434d-84e7-d8dda3b57c0e
                Copyright ©2010 Lim et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 August 2010
                : 30 December 2010
                Categories
                Database

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article