11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have shown that patients with kidney stone disease, and particularly calcium oxalate nephrolithiasis, exhibit dysbiosis in their fecal and urinary microbiota compared with controls. The alterations of microbiota go far beyond the simple presence and representation of Oxalobacter formigenes, a well-known symbiont exhibiting a marked capacity of degrading dietary oxalate and stimulating oxalate secretion by the gut mucosa. Thus, alterations of the intestinal microbiota may be involved in the pathophysiology of calcium kidney stones. However, the role of nutrition in this gut-kidney axis is still unknown, even if nutritional imbalances, such as poor hydration, high salt, and animal protein intake and reduced fruit and vegetable intake, are well-known risk factors for kidney stones. In this narrative review, we provide an overview of the gut-kidney axis in nephrolithiasis from a nutritional perspective, summarizing the evidence supporting the role of nutrition in the modulation of microbiota composition, and their relevance for the modulation of lithogenic risk.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Effects of Vegetarian and Vegan Diets on Gut Microbiota

          The difference in gut microbiota composition between individuals following vegan or vegetarian diets and those following omnivorous diets is well documented. A plant-based diet appears to be beneficial for human health by promoting the development of more diverse and stable microbial systems. Additionally, vegans and vegetarians have significantly higher counts of certain Bacteroidetes-related operational taxonomic units compared to omnivores. Fibers (that is, non-digestible carbohydrates, found exclusively in plants) most consistently increase lactic acid bacteria, such as Ruminococcus, E. rectale, and Roseburia, and reduce Clostridium and Enterococcus species. Polyphenols, also abundant in plant foods, increase Bifidobacterium and Lactobacillus, which provide anti-pathogenic and anti-inflammatory effects and cardiovascular protection. High fiber intake also encourages the growth of species that ferment fiber into metabolites as short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. The positive health effects of SCFAs are myriad, including improved immunity against pathogens, blood–brain barrier integrity, provision of energy substrates, and regulation of critical functions of the intestine. In conclusion, the available literature suggests that a vegetarian/vegan diet is effective in promoting a diverse ecosystem of beneficial bacteria to support both human gut microbiome and overall health. This review will focus on effects of different diets and nutrient contents, particularly plant-based diets, on the gut microbiota composition and production of microbial metabolites affecting the host health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain

            Background: Cross-sectional studies suggest that the microbes in the human gut have a role in obesity by influencing the human body’s ability to extract and store calories. The aim of this study was to assess if there is a correlation between change in body weight over time and gut microbiome composition. Methods: We analysed 16S ribosomal RNA gene sequence data derived from the faecal samples of 1632 healthy females from TwinsUK to investigate the association between gut microbiome measured cross-sectionally and longitudinal weight gain (adjusted for caloric intake and baseline body mass index). Dietary fibre intake was investigated as a possible modifier. Results: Less than half of the variation in long-term weight change was found to be heritable (h2=0.41 (0.31, 0.47)). Gut microbiota diversity was negatively associated with long-term weight gain, whereas it was positively correlated with fibre intake. Nine bacterial operational taxonomic units (OTUs) were significantly associated with weight gain after adjusting for covariates, family relatedness and multiple testing (false discovery rate <0.05). OTUs associated with lower long-term weight gain included those assigned to Ruminococcaceae (associated in mice with improved energy metabolism) and Lachnospiraceae. A Bacterioides species OTU was associated with increased risk of weight gain but this appears to be driven by its correlation with lower levels of diversity. Conclusions: High gut microbiome diversity, high-fibre intake and OTUs implicated in animal models of improved energy metabolism are all correlated with lower term weight gain in humans independently of calorie intake and other confounders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial

              Objective To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses. Design Twelve non-diabetic adults with overweight and obesity received 20 g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo-controlled, cross-over design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period. Results Both IPE and inulin supplementation improved insulin resistance compared with cellulose supplementation, measured by homeostatic model assessment 2 (mean±SEM 1.23±0.17 IPE vs 1.59±0.17 cellulose, p=0.001; 1.17±0.15 inulin vs 1.59±0.17 cellulose, p=0.009), with no differences between IPE and inulin (p=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased proinflammatory interleukin-8 levels compared with cellulose, while inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridiales) compared with cellulose, with small differences at the species level observed between IPE and cellulose. Conclusion These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                20 February 2020
                February 2020
                : 12
                : 2
                : 548
                Affiliations
                [1 ]Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy; anouvenne@ 123456ao.pr.it (A.N.); gchiussi@ 123456ao.pr.it (G.C.); castaldog@ 123456ao.pr.it (G.C.); angela.guerra@ 123456unipr.it (A.G.); tiziana.meschi@ 123456unipr.it (T.M.)
                [2 ]Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
                [3 ]Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
                Author notes
                [* ]Correspondence: aticinesi@ 123456ao.pr.it or andrea.ticinesi@ 123456gmail.com ; Tel.: +39-0521-703871; +39-3471-845191
                Author information
                https://orcid.org/0000-0001-9171-8592
                Article
                nutrients-12-00548
                10.3390/nu12020548
                7071363
                32093202
                f8adbc42-2508-4abe-867f-212eb4b91c4b
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 January 2020
                : 18 February 2020
                Categories
                Review

                Nutrition & Dietetics
                urolithiasis,diet,oxalate,renal calculi,microbiome,oxalobacter
                Nutrition & Dietetics
                urolithiasis, diet, oxalate, renal calculi, microbiome, oxalobacter

                Comments

                Comment on this article