83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foliicolous fungi from Arctostaphylos pungens in Mexico

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arctostaphylos pungens “Manzanita” is an important shrub in the southwestern USA, and northern and central Mexico. Manzanita bears apple-like fruit that is utilised for a range of edible products. Over the past two years, several foliar disease problems were noted on this host in the San José de Gracia region of Mexico. The aim of the present study was to elucidate their identity through the analysis of morphological characters and DNA phylogeny (based on the large subunit nuclear ribosomal RNA gene and the ITS spacers and the intervening 5.8S rRNA gene of the nrDNA operon) of the fungi associated with these disease symptoms. Three species are newly described: Phaeococcomyces mexicanus sp. nov., a presumed epiphyte, and two species associated with leaf spots and defoliation, namely Coccomyces arctostaphyloides sp. nov. and Passalora arctostaphyli sp. nov. A fourth species is also associated with leaf spots and tip dieback is Harknessia arctostaphyli, for which an epitype is designated. All species can co-occur on the same shrub, which adds to the stress experienced by the plant, leading to further defoliation and dieback.

          Related collections

          Most cited references 6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Phylogenetic lineages in the Capnodiales

          The Capnodiales incorporates plant and human pathogens, endophytes, saprobes and epiphytes, with a wide range of nutritional modes. Several species are lichenised, or occur as parasites on fungi, or animals. The aim of the present study was to use DNA sequence data of the nuclear ribosomal small and large subunit RNA genes to test the monophyly of the Capnodiales, and resolve families within the order. We designed primers to allow the amplification and sequencing of almost the complete nuclear ribosomal small and large subunit RNA genes. Other than the Capnodiaceae (sooty moulds), and the Davidiellaceae, which contains saprobes and plant pathogens, the order presently incorporates families of major plant pathological importance such as the Mycosphaerellaceae, Teratosphaeriaceae and Schizothyriaceae. The Piedraiaceae was not supported, but resolves in the Teratosphaeriaceae. The Dissoconiaceae is introduced as a new family to accommodate Dissoconium and Ramichloridium. Lichenisation, as well as the ability to be saprobic or plant pathogenic evolved more than once in several families, though the taxa in the upper clades of the tree lead us to conclude that the strictly plant pathogenic, nectrotrophic families evolved from saprobic ancestors (Capnodiaceae), which is the more primitive state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unravelling Mycosphaerella: do you believe in genera?

             Angus Carnegie (corresponding) ,  P.W. Crous,  B.A. Summerell (2009)
            Many fungal genera have been defined based on single characters considered to be informative at the generic level. In addition, many unrelated taxa have been aggregated in genera because they shared apparently similar morphological characters arising from adaptation to similar niches and convergent evolution. This problem is aptly illustrated in Mycosphaerella. In its broadest definition, this genus of mainly leaf infecting fungi incorporates more than 30 form genera that share similar phenotypic characters mostly associated with structures produced on plant tissue or in culture. DNA sequence data derived from the LSU gene in the present study distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. In some cases, these clades represent recognisable monophyletic lineages linked to well circumscribed anamorphs. This association is complicated, however, by the fact that morphologically similar form genera are scattered throughout the order (Capnodiales), and for some species more than one morph is expressed depending on cultural conditions and media employed for cultivation. The present study shows that Mycosphaerella s.s. should best be limited to taxa with Ramularia anamorphs, with other well defined clades in the Mycosphaerellaceae representing Cercospora, Cercosporella, Dothistroma, Lecanosticta, Phaeophleospora, Polythrincium, Pseudocercospora, Ramulispora, Septoria and Sonderhenia. The genus Teratosphaeria accommodates taxa with Kirramyces anamorphs, while other clades supported in the Teratosphaeriaceae include Baudoinea, Capnobotryella, Devriesia, Penidiella, Phaeothecoidea, Readeriella, Staninwardia and Stenella. The genus Schizothyrium with Zygophiala anamorphs is supported as belonging to the Schizothyriaceae, while Dissoconium and Ramichloridium appear to represent a distinct family. Several clades remain unresolved due to limited sampling. Mycosphaerella, which has hitherto been used as a term of convenience to describe ascomycetes with solitary ascomata, bitunicate asci and 1-septate ascospores, represents numerous genera and several families yet to be defined in future studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phylogenetic lineages in Pseudocercospora

              Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general morphology, within the same geographic region, frequently differed phylogenetically, indicating that the application of European and American names to Asian taxa, and vice versa, was often not warranted. Taxonomic novelties: New genera - Pallidocercospora Crous, Phaeomycocentrospora Crous, H.D. Shin & U. Braun; New species - Cercospora eucommiae Crous, U. Braun & H.D. Shin, Microcyclospora quercina Crous & Verkley, Pseudocercospora ampelopsis Crous, U. Braun & H.D. Shin, Pseudocercospora cercidicola Crous, U. Braun & C. Nakash., Pseudocercospora crispans G.C. Hunter & Crous, Pseudocercospora crocea Crous, U. Braun, G.C. Hunter & H.D. Shin, Pseudocercospora haiweiensis Crous & X. Zhou, Pseudocercospora humulicola Crous, U. Braun & H.D. Shin, Pseudocercospora marginalis G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora ocimi-basilici Crous, M.E. Palm & U. Braun, Pseudocercospora plectranthi G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora proteae Crous, Pseudocercospora pseudostigmina-platani Crous, U. Braun & H.D. Shin, Pseudocercospora pyracanthigena Crous, U. Braun & H.D. Shin, Pseudocercospora ravenalicola G.C. Hunter & Crous, Pseudocercospora rhamnellae G.C. Hunter, H.D. Shin, U. Braun & Crous, Pseudocercospora rhododendri-indici Crous, U. Braun & H.D. Shin, Pseudocercospora tibouchinigena Crous & U. Braun, Pseudocercospora xanthocercidis Crous, U. Braun & A. Wood, Pseudocercosporella koreana Crous, U. Braun & H.D. Shin; New combinations - Pallidocercospora acaciigena (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora crystallina (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora heimii (Crous) Crous, Pallidocercospora heimioides (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora holualoana (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidocercospora konae (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidoocercospora irregulariramosa (Crous & M.J. Wingf.) Crous & M.J. Wingf., Phaeomycocentrospora cantuariensis (E.S. Salmon & Wormald) Crous, H.D. Shin & U. Braun, Pseudocercospora hakeae (U. Braun & Crous) U. Braun & Crous, Pseudocercospora leucadendri (Cooke) U. Braun & Crous, Pseudocercospora snelliana (Reichert) U. Braun, H.D. Shin, C. Nakash. & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin; Typifications: Epitypifications - Pseudocercospora angolensis (T. Carvalho & O. Mendes) Crous & U. Braun, Pseudocercospora araliae (Henn.) Deighton, Pseudocercospora cercidis-chinensis H.D. Shin & U. Braun, Pseudocercospora corylopsidis (Togashi & Katsuki) C. Nakash. & Tak. Kobay., Pseudocercospora dovyalidis (Chupp & Doidge) Deighton, Pseudocercospora fukuokaensis (Chupp) X.J. Liu & Y.L. Guo, Pseudocercospora humuli (Hori) Y.L. Guo & X.J. Liu, Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lyoniae (Katsuki & Tak. Kobay.) Deighton, Pseudocercospora lythri H.D. Shin & U. Braun, Pseudocercospora sambucigena U. Braun, Crous & K. Schub., Pseudocercospora stephanandrae (Tak. Kobay. & H. Horie) C. Nakash. & Tak. Kobay., Pseudocercospora viburnigena U. Braun & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin, Xenostigmina zilleri (A. Funk) Crous; Lectotypification - Pseudocercospora ocimicola (Petr. & Cif.) Deighton; Neotypifications - Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lonicericola (W. Yamam.) Deighton, Pseudocercospora zelkovae (Hori) X.J. Liu & Y.L. Guo.
                Bookmark

                Author and article information

                Journal
                IMA Fungus
                IMA Fungus
                IMA Fungus
                IMA Fungus
                International Mycological Association
                2210-6340
                2210-6359
                4 March 2014
                June 2014
                : 5
                : 1
                : 7-15
                Affiliations
                [1 ]Centro de Ciencias Básicas, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, Av. Universidad No. 940, Colonia Cd. Universitaria, C.P. 20131, Aguascalientes, Ags., Mexico
                [2 ]CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
                [3 ]Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
                [4 ]Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
                Author notes
                corresponding author e-mail: p.crous@ 123456cbs.knaw.nl
                Article
                10.5598/imafungus.2014.05.01.02
                4107899
                © 2014 International Mycological Association

                You are free to share - to copy, distribute and transmit the work, under the following conditions:

                Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

                Non-commercial: You may not use this work for commercial purposes.

                No derivative works: You may not alter, transform, or build upon this work.

                For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.

                Categories
                Article

                Plant science & Botany

                coccomyces, harknessia, its, lsu, passalora, phaeococcomyces, systematics

                Comments

                Comment on this article