+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells.

          Materials and Methods:

          In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells.


          The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC.


          Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular portraits of human breast tumours.

          Human breast tumours are diverse in their natural history and in their responsiveness to treatments. Variation in transcriptional programs accounts for much of the biological diversity of human cells and tumours. In each cell, signal transduction and regulatory systems transduce information from the cell's identity to its environmental status, thereby controlling the level of expression of every gene in the genome. Here we have characterized variation in gene expression patterns in a set of 65 surgical specimens of human breast tumours from 42 different individuals, using complementary DNA microarrays representing 8,102 human genes. These patterns provided a distinctive molecular portrait of each tumour. Twenty of the tumours were sampled twice, before and after a 16-week course of doxorubicin chemotherapy, and two tumours were paired with a lymph node metastasis from the same patient. Gene expression patterns in two tumour samples from the same individual were almost always more similar to each other than either was to any other sample. Sets of co-expressed genes were identified for which variation in messenger RNA levels could be related to specific features of physiological variation. The tumours could be classified into subtypes distinguished by pervasive differences in their gene expression patterns.
            • Record: found
            • Abstract: found
            • Article: not found

            Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.

            The purpose of this study was to classify breast carcinomas based on variations in gene expression patterns derived from cDNA microarrays and to correlate tumor characteristics to clinical outcome. A total of 85 cDNA microarray experiments representing 78 cancers, three fibroadenomas, and four normal breast tissues were analyzed by hierarchical clustering. As reported previously, the cancers could be classified into a basal epithelial-like group, an ERBB2-overexpressing group and a normal breast-like group based on variations in gene expression. A novel finding was that the previously characterized luminal epithelial/estrogen receptor-positive group could be divided into at least two subgroups, each with a distinctive expression profile. These subtypes proved to be reasonably robust by clustering using two different gene sets: first, a set of 456 cDNA clones previously selected to reflect intrinsic properties of the tumors and, second, a gene set that highly correlated with patient outcome. Survival analyses on a subcohort of patients with locally advanced breast cancer uniformly treated in a prospective study showed significantly different outcomes for the patients belonging to the various groups, including a poor prognosis for the basal-like subtype and a significant difference in outcome for the two estrogen receptor-positive groups.
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer statistics, 2010.

              Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data regarding cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,529,560 new cancer cases and 569,490 deaths from cancer are projected to occur in the United States in 2010. Overall cancer incidence rates decreased in the most recent time period in both men (1.3% per year from 2000 to 2006) and women (0.5% per year from 1998 to 2006), largely due to decreases in the 3 major cancer sites in men (lung, prostate, and colon and rectum [colorectum]) and 2 major cancer sites in women (breast and colorectum). This decrease occurred in all racial/ethnic groups in both men and women with the exception of American Indian/Alaska Native women, in whom rates were stable. Among men, death rates for all races combined decreased by 21.0% between 1990 and 2006, with decreases in lung, prostate, and colorectal cancer rates accounting for nearly 80% of the total decrease. Among women, overall cancer death rates between 1991 and 2006 decreased by 12.3%, with decreases in breast and colorectal cancer rates accounting for 60% of the total decrease. The reduction in the overall cancer death rates translates to the avoidance of approximately 767,000 deaths from cancer over the 16-year period. This report also examines cancer incidence, mortality, and survival by site, sex, race/ethnicity, geographic area, and calendar year. Although progress has been made in reducing incidence and mortality rates and improving survival, cancer still accounts for more deaths than heart disease in persons younger than 85 years. Further progress can be accelerated by applying existing cancer control knowledge across all segments of the population and by supporting new discoveries in cancer prevention, early detection, and treatment. Copyright 2010 American Cancer Society, Inc.

                Author and article information

                J Carcinog
                Journal of Carcinogenesis
                Medknow Publications & Media Pvt Ltd (India )
                31 December 2011
                : 10
                [1 ]Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
                [2 ]Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
                [3 ]Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
                [4 ]Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
                [5 ]Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
                Author notes
                [* ]Corresponding author
                © 2011 Zhao

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Original Article


                Comment on this article