58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer immunotherapy: moving beyond current vaccines.

          Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regression in preclinical and clinical models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).

            Newborn mice homozygous for a targeted disruption of insulin-like growth factor gene (Igf-1) exhibit a growth deficiency similar in severity to that previously observed in viable Igf-2 null mutants (60% of normal birthweight). Depending on genetic background, some of the Igf-1(-/-) dwarfs die shortly after birth, while others survive and reach adulthood. In contrast, null mutants for the Igf1r gene die invariably at birth of respiratory failure and exhibit a more severe growth deficiency (45% normal size). In addition to generalized organ hypoplasia in Igf1r(-/-) embryos, including the muscles, and developmental delays in ossification, deviations from normalcy were observed in the central nervous system and epidermis. Igf-1(-/-)/Igf1r(-/-) double mutants did not differ in phenotype from Igf1r(-/-) single mutants, while in Igf-2(-)/Igf1r(-/-) and Igf-1(-/-)/Igf-2(-) double mutants, which are phenotypically identical, the dwarfism was further exacerbated (30% normal size). The roles of the IGFs in mouse embryonic development, as revealed from the phenotypic differences between these mutants, are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells.

              MicroRNA (miRNA) transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs) as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity) to multivesicular bodies (sites of exosome biogenesis) and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs) for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Science
                Science (New York, N.Y.)
                1095-9203
                0036-8075
                Apr 15 2016
                : 352
                : 6283
                Affiliations
                [1 ] Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA. Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
                [2 ] Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
                [3 ] Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
                [4 ] Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA, and Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
                Article
                352/6283/366 NIHMS782898
                10.1126/science.aad9272
                27081073
                f8d22e48-1efc-4d61-9adb-db21f3f33f22
                Copyright © 2016, American Association for the Advancement of Science.
                History

                Comments

                Comment on this article