69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      OsSPL13 controls grain size in cultivated rice.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although genetic diversity has a cardinal role in domestication, abundant natural allelic variations across the rice genome that cause agronomically important differences between diverse varieties have not been fully explored. Here we implement an approach integrating genome-wide association testing with functional analysis on grain size in a diverse rice population. We report that a major quantitative trait locus, GLW7, encoding the plant-specific transcription factor OsSPL13, positively regulates cell size in the grain hull, resulting in enhanced rice grain length and yield. We determine that a tandem-repeat sequence in the 5' UTR of OsSPL13 alters its expression by affecting transcription and translation and that high expression of OsSPL13 is associated with large grains in tropical japonica rice. Further analysis indicates that the large-grain allele of GLW7 in tropical japonica rice was introgressed from indica varieties under artificial selection. Our study demonstrates that new genes can be effectively identified on the basis of genome-wide association data.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.

          Grain weight is one of the most important components of grain yield and is controlled by quantitative trait loci (QTLs) derived from natural variations in crops. However, the molecular roles of QTLs in the regulation of grain weight have not been fully elucidated. Here, we report the cloning and characterization of GW2, a new QTL that controls rice grain width and weight. Our data show that GW2 encodes a previously unknown RING-type protein with E3 ubiquitin ligase activity, which is known to function in the degradation by the ubiquitin-proteasome pathway. Loss of GW2 function increased cell numbers, resulting in a larger (wider) spikelet hull, and it accelerated the grain milk filling rate, resulting in enhanced grain width, weight and yield. Our results suggest that GW2 negatively regulates cell division by targeting its substrate(s) to proteasomes for regulated proteolysis. The functional characterization of GW2 provides insight into the mechanism of seed development and is a potential tool for improving grain yield in crops.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana.

            The FT gene integrates several external and endogenous cues controlling flowering, including information on day length. A complex of the mobile FT protein and the bZIP transcription factor FD in turn has a central role in activating genes that execute the switch from vegetative to reproductive development. Here we reveal that microRNA156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes not only act downstream of FT/FD, but also define a separate endogenous flowering pathway. High levels of miR156 in young plants prevent precocious flowering. A subsequent day length-independent decline in miR156 abundance provides a permissive environment for flowering and is paralleled by a rise in SPL levels. At the shoot apex, FT/FD and SPLs converge on an overlapping set of targets, with SPLs directly activating flower-promoting MADS box genes, providing a molecular substrate for both the redundant activities and the feed-forward action of the miR156/SPL and FT/FD modules in flowering control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of grain size, shape and quality by OsSPL16 in rice.

              Grain size and shape are important components of grain yield and quality and have been under selection since cereals were first domesticated. Here, we show that a quantitative trait locus GW8 is synonymous with OsSPL16, which encodes a protein that is a positive regulator of cell proliferation. Higher expression of this gene promotes cell division and grain filling, with positive consequences for grain width and yield in rice. Conversely, a loss-of-function mutation in Basmati rice is associated with the formation of a more slender grain and better quality of appearance. The correlation between grain size and allelic variation at the GW8 locus suggests that mutations within the promoter region were likely selected in rice breeding programs. We also show that a marker-assisted strategy targeted at elite alleles of GS3 and OsSPL16 underlying grain size and shape can be effectively used to simultaneously improve grain quality and yield.
                Bookmark

                Author and article information

                Journal
                Nat. Genet.
                Nature genetics
                1546-1718
                1061-4036
                Apr 2016
                : 48
                : 4
                Affiliations
                [1 ] National Center for Gene Research, Chinese Academy of Sciences Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
                [2 ] State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
                [3 ] Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea.
                Article
                ng.3518
                10.1038/ng.3518
                26950093
                f8d2ac31-9c36-4202-95fa-d3fdb60d78ec
                History

                Comments

                Comment on this article