22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In vivo expression of UDP-N-acetylglucosamine: Alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-1) in Aspergillus oryzae and effects on the sugar chain of alpha-amylase.

      Bioscience, biotechnology, and biochemistry
      Aspergillus oryzae, enzymology, genetics, Carbohydrate Metabolism, Carbohydrates, chemistry, Chromatography, High Pressure Liquid, Gene Expression, Glycosylation, Microscopy, Fluorescence, N-Acetylglucosaminyltransferases, metabolism, Plasmids, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Uridine Diphosphate N-Acetylglucosamine, alpha-Amylases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          UDP-N-Acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-I) is an essential enzyme in the conversion of high mannose type oligosaccharide to the hybrid or complex type. The full length of the rat GnT-I gene was expressed in the filamentous fungus Aspergillus oryzae. A microsomal preparation from a recombinant fungus (strain NG) showed GnT-I activity that transferred N-acetylglucosamine residue to acceptor heptaose, Man(5)GlcNAc(2). The N-linked sugar chain of alpha-amylase secreted by the strain showed a peak of novel retention on high performance liquid chromatography that was same as a reaction product of in vitro GnT-1 assay. The peak of oligosaccharide disappeared on HPLC after beta-N-acetylglucosaminidase treatment. Mass analysis supported the presence of GlcNAcMan(5)GlcNAc(2) as a sugar chain of alpha-amylase from strain NG. Chimera of GnT-I with green fluorescent protein (GFP) showed a dotted pattern of fluorescence in the mycelia, suggesting localization at Golgi vesicles. We concluded that GnT-1 was functionally expressed in A. oryzae cells and that N-acetylglucosamine residue was transferred to N-glycan of alpha-amylase in vivo. A. oryzae is expected to be a potential host for the production of glycoprotein with a genetically altered sugar chain.

          Related collections

          Author and article information

          Comments

          Comment on this article