27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a New Predictive index (Bathing Water Quality Index, BWQI) Based on Escherichia coli Physiological States for Bathing Waters Monitoring

      , , , ,
      Journal of Marine Science and Engineering
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial pathogens in coastal aquatic ecosystems pose a potential public health hazard for bathing water use. The European Bathing Water Directive (2006/7/EC) currently relies on the culturability of fecal pollution bacterial indicators such as Escherichia coli, without considering dormant or quiescent (Viable But Not Culturable, VBNC) cells, whose possible resuscitation after bathers ingestion cannot be excluded. Standard methods are also time-consuming and therefore hardly meet early warning needs of marine monitoring. To solve this issue, a new index, the Bathing Water Quality Index (BWQI), has here been developed, allowing to identify the most favorable coastal zones for recreational use. The index was calculated by combining numerical simulations of living and dormant E. coli abundances and their residence times. To specifically set up the model with the different physiological states of the whole E. coli population, an ad hoc experiment based on the fluorescent antibody method was performed. The BWQI application to Santa Marinella bathing area highlights a potential risk for human health in the zone most frequented by bathers. This study provides a predictive tool to support preventive decisions of the competent authorities and to properly protect bathers’ health, stressing the need for improved methods for environmental monitoring.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The importance of the viable but non-culturable state in human bacterial pathogens

          Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The indigenous gastrointestinal microflora.

            R. Berg (1996)
            The indigenous gastrointestinal (GI) tract microflora has profound effects on the anatomical, physiological and immunological development of the host. The indigenous microflora stimulates the host immune system to respond more quickly to pathogen challenge and, through bacterial antagonism, inhibits colonization of the GI tract by overt exogenous pathogens. Indigenous GI bacteria are also opportunistic pathogens and can translocate across the mucosal barrier to cause systemic infection in debilitated hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Environmental Escherichia coli: ecology and public health implications-a review.

              Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through faeces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent faecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extraintestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a faecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics revealed the diversity and complexity of E. coli strains in various environments, which are affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments with regard to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Marine Science and Engineering
                JMSE
                MDPI AG
                2077-1312
                February 2021
                January 26 2021
                : 9
                : 2
                : 120
                Article
                10.3390/jmse9020120
                f8d6309a-f48f-4f91-9b1b-700dacf3d81e
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article