36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indirect estimation of the prevalence of spinal muscular atrophy Type I, II, and III in the United States

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Spinal muscular atrophy (SMA) is a progressive, devastating disease and a leading inherited cause of infant mortality. The limited population-based literature is confined to small regional studies. Estimates of prevalence are needed to characterize the burden of SMA and to understand trends in prevalence by disease type as new treatments become available. The reported estimates of SMA genotype prevalence at birth consistently range from 8.5–10.3 per 100,000 live births, with a mid-range estimate of 9.4 per 100,000. Among infants born with an SMA genotype, it is reported that ~58% will develop SMA Type I, 29% will develop Type II, and 13% will develop Type III, respectively.

          Results

          Using evidence from peer-reviewed literature for SMA birth prevalence, age at symptom onset, and SMA type-specific survival, and incorporating United States vital statistics, we constructed life tables to estimate prevalence for SMA Types I, II, and III in the United States. We estimated the number of prevalent cases in the US to be 8526, 9429, and 10,333 based on a birth prevalence of 8.5, 9.4, and 10.3, respectively (the lower, midpoint, and upper ends of the reported range). Assuming the midpoint of 9.4 and US-reported survival, the type-specific population prevalence estimates were 1610 for SMA Type I, 3944 for SMA Type II, and 3875 for SMA Type III. Evidence-based estimates of the number of people living with SMA in the United States in the published literature were previously unavailable.

          Conclusions

          In the absence of a survey or other means to directly estimate prevalence in the US population, estimates can be calculated indirectly using a life table.

          Electronic supplementary material

          The online version of this article (10.1186/s13023-017-0724-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Spinal muscular atrophy.

          Spinal muscular atrophy is an autosomal recessive neurodegenerative disease characterised by degeneration of spinal cord motor neurons, atrophy of skeletal muscles, and generalised weakness. It is caused by homozygous disruption of the survival motor neuron 1 (SMN1) gene by deletion, conversion, or mutation. Although no medical treatment is available, investigations have elucidated possible mechanisms underlying the molecular pathogenesis of the disease. Treatment strategies have been developed to use the unique genomic structure of the SMN1 gene region. Several candidate treatment agents have been identified and are in various stages of development. These and other advances in medical technology have changed the standard of care for patients with spinal muscular atrophy. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, therapeutic development, and evidence from clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spinal muscular atrophy: a clinical and research update.

            Spinal muscular atrophy, a hereditary degenerative disorder of lower motor neurons associated with progressive muscle weakness and atrophy, is the most common genetic cause of infant mortality. It is caused by decreased levels of the "survival of motor neuron" (SMN) protein. Its inheritance pattern is autosomal recessive, resulting from mutations involving the SMN1 gene on chromosome 5q13. However, unlike many other autosomal recessive diseases, the SMN gene involves a unique structure (an inverted duplication) that presents potential therapeutic targets. Although no effective treatment for spinal muscular atrophy exists, the field of translational research in spinal muscular atrophy is active, and clinical trials are ongoing. Advances in the multidisciplinary supportive care of children with spinal muscular atrophy also offer hope for improved life expectancy and quality of life. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Differences in SMN1 allele frequencies among ethnic groups within North America

              Background: Spinal muscular atrophy (SMA) is the most common inherited lethal disease of children. Various genetic deletions involving the bi-allelic loss of SMN1 exon 7 are reported to account for 94% of affected individuals. Published literature places the carrier frequency for SMN1 mutations between 1 in 25 and 1 in 50 in the general population. Although SMA is considered to be a pan-ethnic disease, carrier frequencies for many ethnicities, including most ethnic groups in North America, are unknown. Objectives and methods: To provide an accurate assessment of SMN1 mutation carrier frequencies in African American, Ashkenazi Jewish, Asian, Caucasian, and Hispanic populations, more than 1000 specimens in each ethnic group were tested using a clinically validated, quantitative real-time polymerase chain reaction (PCR) assay that measures exon 7 copy number. Results: The observed one-copy genotype frequency was 1 in 37 (2.7%) in Caucasian, 1 in 46 (2.2%) in Ashkenazi Jew, 1 in 56 (1.8%) in Asian, 1 in 91 (1.1%) in African American, and 1 in 125 (0.8%) in Hispanic specimens. Additionally, an unusually high frequency of alleles with multiple copies of SMN1 was identified in the African American group (27% compared to 3.3–8.1%). This latter finding has clinical implications for providing accurate adjusted genetic risk assessments to the African American population. Conclusions: Differences in the frequency of SMA carriers were significant among several ethnic groups. This study provides an accurate assessment of allele frequencies and estimates of adjusted genetic risk that were previously unavailable to clinicians and patients considering testing.
                Bookmark

                Author and article information

                Contributors
                404-712-9951 , clally@emory.edu
                cynthia.jones@biogen.com
                epidemiologyassociatesllc@gmail.com
                wflande@emory.edu
                Journal
                Orphanet J Rare Dis
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                28 November 2017
                28 November 2017
                2017
                : 12
                : 175
                Affiliations
                [1 ]ISNI 0000 0001 0941 6502, GRID grid.189967.8, Rollins School of Public Health, , Emory University, ; Atlanta, GA USA
                [2 ]ISNI 0000 0004 0384 8146, GRID grid.417832.b, Biogen, ; Cambridge, MA USA
                [3 ]Epidemiology Associates LLC, Chapel Hill, NC USA
                Article
                724
                10.1186/s13023-017-0724-z
                5704427
                29183396
                f8d79a81-ca72-4e69-a1a0-4c964e081302
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 August 2017
                : 15 November 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100005614, Biogen;
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Infectious disease & Microbiology
                prevalence,spinal muscular atrophy,survival
                Infectious disease & Microbiology
                prevalence, spinal muscular atrophy, survival

                Comments

                Comment on this article