147
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Plant protoplasts, a proven physiological and versatile cell system, are widely used in high-throughput analysis and functional characterization of genes. Green protoplasts have been successfully used in investigations of plant signal transduction pathways related to hormones, metabolites and environmental challenges. In rice, protoplasts are commonly prepared from suspension cultured cells or etiolated seedlings, but only a few studies have explored the use of protoplasts from rice green tissue.

          Results

          Here, we report a simplified method for isolating protoplasts from normally cultivated young rice green tissue without the need for unnecessary chemicals and a vacuum device. Transfections of the generated protoplasts with plasmids of a wide range of sizes (4.5-13 kb) and co-transfections with multiple plasmids achieved impressively high efficiencies and allowed evaluations by 1) protein immunoblotting analysis, 2) subcellular localization assays, and 3) protein-protein interaction analysis by bimolecular fluorescence complementation (BiFC) and firefly luciferase complementation (FLC). Importantly, the rice green tissue protoplasts were photosynthetically active and sensitive to the retrograde plastid signaling inducer norflurazon (NF). Transient expression of the GFP-tagged light-related transcription factor OsGLK1 markedly upregulated transcript levels of the endogeneous photosynthetic genes OsLhcb1, OsLhcp, GADPH and RbcS, which were reduced to some extent by NF treatment in the rice green tissue protoplasts.

          Conclusions

          We show here a simplified and highly efficient transient gene expression system using photosynthetically active rice green tissue protoplasts and its broad applications in protein immunoblot, localization and protein-protein interaction assays. These rice green tissue protoplasts will be particularly useful in studies of light/chloroplast-related processes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants.

          Genome sequencing has resulted in the identification of a large number of uncharacterized genes with unknown functions. It is widely recognized that determination of the intracellular localization of the encoded proteins may aid in identifying their functions. To facilitate these localization experiments, we have generated a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies. In particular, this organelle marker set contains indicators for the endoplasmic reticulum, the Golgi apparatus, the tonoplast, peroxisomes, mitochondria, plastids and the plasma membrane. All markers were generated with four different fluorescent proteins (FP) (green, cyan, yellow or red FPs) in two different binary plasmids for kanamycin or glufosinate selection, respectively, to allow for flexible combinations. The labeled organelles displayed characteristic morphologies consistent with previous descriptions that could be used for their positive identification. Determination of the intracellular distribution of three previously uncharacterized proteins demonstrated the usefulness of the markers in testing predicted subcellular localizations. This organelle marker set should be a valuable resource for the plant community for such co-localization studies. In addition, the Arabidopsis organelle marker lines can also be employed in plant cell biology teaching labs to demonstrate the distribution and dynamics of these organelles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chlorophyll fluorescence--a practical guide.

            Chlorophyll fluorescence analysis has become one of the most powerful and widely used techniques available to plant physiologists and ecophysiologists. This review aims to provide an introduction for the novice into the methodology and applications of chlorophyll fluorescence. After a brief introduction into the theoretical background of the technique, the methodology and some of the technical pitfalls that can be encountered are explained. A selection of examples is then used to illustrate the types of information that fluorescence can provide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.

              Three kinds of improvements have been introduced into the M13-based cloning systems. (1) New Escherichia coli host strains have been constructed for the E. coli bacteriophage M13 and the high-copy-number pUC-plasmid cloning vectors. Mutations introduced into these strains improve cloning of unmodified DNA and of repetitive sequences. A new suppressorless strain facilitates the cloning of selected recombinants. (2) The complete nucleotide sequences of the M13mp and pUC vectors have been compiled from a number of sources, including the sequencing of selected segments. The M13mp18 sequence is revised to include the G-to-T substitution in its gene II at position 6 125 bp (in M13) or 6967 bp in M13mp18. (3) M13 clones suitable for sequencing have been obtained by a new method of generating unidirectional progressive deletions from the polycloning site using exonucleases HI and VII.
                Bookmark

                Author and article information

                Journal
                Plant Methods
                Plant Methods
                BioMed Central
                1746-4811
                2011
                30 September 2011
                : 7
                : 30
                Affiliations
                [1 ]State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
                [2 ]Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
                [3 ]Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
                Article
                1746-4811-7-30
                10.1186/1746-4811-7-30
                3203094
                21961694
                f8df0e9f-6b7c-4839-9eb9-285796a15bd3
                Copyright ©2011 Zhang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2011
                : 30 September 2011
                Categories
                Methodology

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article