18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune blockade inhibitors and the radiation abscopal effect in gastrointestinal cancers

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The field of tumor immunology has produced in the recent years a revolution in cancer therapeutics putting an end in the long lasting frustration of investigators in the area stemming from largely unsuccessful strides to develop cancer vaccines. This progress has come from the introduction of immune checkpoint inhibitors, monoclonal antibodies blocking ligand/receptor pairs with inhibitory effects for immune cells. Through this blockade immune checkpoint blockers are able to activate the immune system and create an anti-tumoral effect. A significant sub-set of patients with various types of cancers such as melanoma, lung carcinomas and urothelial cancers benefit from treatment with these drugs and survivals have improved in some cases. However other cancers are primarily resistant to immune blockers and secondary resistance is also the norm. Radiation therapy is often used in the palliative treatment of patients with advanced cancers and, in addition to the local effect in the irradiated field, it may in rare cases produce a systemic antitumor effect, termed “abscopal”. This effect has been suggested to be produced by immune mechanisms. Thus an opportunity presents for a synergistic effect of immune stimulation between radiation and immune blockade inhibitors. The therapeutic opportunities presented with the combination of radiation and these drugs for gastrointestinal cancers will be discussed in this editorial overview.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Combining radiotherapy and cancer immunotherapy: a paradigm shift.

          The therapeutic application of ionizing radiation has been largely based on its cytocidal power combined with the ability to selectively target tumors. Radiotherapy effects on survival of cancer patients are generally interpreted as the consequence of improved local control of the tumor, directly decreasing systemic spread. Experimental data from multiple cancer models have provided sufficient evidence to propose a paradigm shift, whereby some of the effects of ionizing radiation are recognized as contributing to systemic antitumor immunity. Recent examples of objective responses achieved by adding radiotherapy to immunotherapy in metastatic cancer patients support this view. Therefore, the traditional palliative role of radiotherapy in metastatic disease is evolving into that of a powerful adjuvant for immunotherapy. This combination strategy adds to the current anticancer arsenal and offers opportunities to harness the immune system to extend survival, even among metastatic and heavily pretreated cancer patients. We briefly summarize key evidence supporting the role of radiotherapy as an immune adjuvant. A critical appraisal of the current status of knowledge must include potential immunosuppressive effects of radiation that can hamper its capacity to convert the irradiated tumor into an in situ, individualized vaccine. Moreover, we discuss some of the current challenges to translate this knowledge to the clinic as more trials testing radiation with different immunotherapies are proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1.

            The aim of T-cell-based immune therapy for cancer has been to generate durable clinical benefit for patients. Following a generation of therapies that largely showed minimal activity, substantial toxicity, and no biomarkers to identify which patients benefit from treatment, early studies are showing signs that programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) inhibitors are highly active. Preclinical and early data from clinical studies suggest that targeting this pathway can induce durable clinical responses in patients in a variety of tumor types, including lung and colon cancer. Furthermore, correlations with tumor PD-L1 expression may enable selection of patients most likely to benefit from treatment. The emerging data not only offer the hope of better cancer therapy but also provide evidence that changes our understanding of how the host immune system interacts with human cancer. ©2012 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PD-1 Restrains Radiotherapy-Induced Abscopal Effect.

              We investigated the influence of PD-1 expression on the systemic antitumor response (abscopal effect) induced by stereotactic ablative radiotherapy (SABR) in preclinical melanoma and renal cell carcinoma models. We compared the SABR-induced antitumor response in PD-1-expressing wild-type (WT) and PD-1-deficient knockout (KO) mice and found that PD-1 expression compromises the survival of tumor-bearing mice treated with SABR. None of the PD-1 WT mice survived beyond 25 days, whereas 20% of the PD-1 KO mice survived beyond 40 days. Similarly, PD-1-blocking antibody in WT mice was able to recapitulate SABR-induced antitumor responses observed in PD-1 KO mice and led to increased survival. The combination of SABR plus PD-1 blockade induced near complete regression of the irradiated primary tumor (synergistic effect), as opposed to SABR alone or SABR plus control antibody. The combination of SABR plus PD-1 blockade therapy elicited a 66% reduction in size of nonirradiated, secondary tumors outside the SABR radiation field (abscopal effect). The observed abscopal effect was tumor specific and was not dependent on tumor histology or host genetic background. The CD11a(high) CD8(+) T-cell phenotype identifies a tumor-reactive population, which was associated in frequency and function with a SABR-induced antitumor immune response in PD-1 KO mice. We conclude that SABR induces an abscopal tumor-specific immune response in both the irradiated and nonirradiated tumors, which is potentiated by PD-1 blockade. The combination of SABR and PD-1 blockade has the potential to translate into a potent immunotherapy strategy in the management of patients with metastatic cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Gastrointest Oncol
                WJGO
                World Journal of Gastrointestinal Oncology
                Baishideng Publishing Group Inc
                1948-5204
                15 September 2018
                15 September 2018
                : 10
                : 9
                : 221-227
                Affiliations
                Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON P6B 0A8, Canada
                Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada. ivoutsadakis@ 123456yahoo.com
                Author notes

                Author contributions: Voutsadakis IA is the sole contributor in this manuscript.

                Correspondence to: Ioannis A Voutsadakis, MD, PhD, Doctor, Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste. Marie, ON P6B 0A8, Canada. ivoutsadakis@ 123456yahoo.com

                Telephone: +1-705-7593434 Fax: +1-705-7593815

                Article
                jWJGO.v10.i9.pg221
                10.4251/wjgo.v10.i9.221
                6147767
                f8e0f34f-9f20-4289-a252-12810c5d418c
                ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 17 July 2018
                : 13 August 2018
                : 27 August 2018
                Categories
                Editorial

                abscopal effect,radiation,cd28/cytotoxic t-lymphocyte antigen-4,immune blockade inhibitors,programmed death 1,programmed death ligand-1

                Comments

                Comment on this article