36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stochastic effects can be important for the behavior of processes involving small population numbers, so the study of stochastic models has become an important topic in the burgeoning field of computational systems biology. However analysis techniques for stochastic models have tended to lag behind their deterministic cousins due to the heavier computational demands of the statistical approaches for fitting the models to experimental data. There is a continuing need for more effective and efficient algorithms. In this article we focus on the parameter inference problem for stochastic kinetic models of biochemical reactions given discrete time-course observations of either some or all of the molecular species.

          Results

          We propose an algorithm for inference of kinetic rate parameters based upon maximum likelihood using stochastic gradient descent (SGD). We derive a general formula for the gradient of the likelihood function given discrete time-course observations. The formula applies to any explicit functional form of the kinetic rate laws such as mass-action, Michaelis-Menten, etc. Our algorithm estimates the gradient of the likelihood function by reversible jump Markov chain Monte Carlo sampling (RJMCMC), and then gradient descent method is employed to obtain the maximum likelihood estimation of parameter values. Furthermore, we utilize flux balance analysis and show how to automatically construct reversible jump samplers for arbitrary biochemical reaction models. We provide RJMCMC sampling algorithms for both fully observed and partially observed time-course observation data. Our methods are illustrated with two examples: a birth-death model and an auto-regulatory gene network. We find good agreement of the inferred parameters with the actual parameters in both models.

          Conclusions

          The SGD method proposed in the paper presents a general framework of inferring parameters for stochastic kinetic models. The method is computationally efficient and is effective for both partially and fully observed systems. Automatic construction of reversible jump samplers and general formulation of the likelihood gradient function makes our method applicable to a wide range of stochastic models. Furthermore our derivations can be useful for other purposes such as using the gradient information for parametric sensitivity analysis or using the reversible jump samplers for full Bayesian inference. The software implementing the algorithms is publicly available at http://cbcl.ics.uci.edu/sgd

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Stochasticity in gene expression: from theories to phenotypes.

          Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stochastic simulation of chemical kinetics.

            Stochastic chemical kinetics describes the time evolution of a well-stirred chemically reacting system in a way that takes into account the fact that molecules come in whole numbers and exhibit some degree of randomness in their dynamical behavior. Researchers are increasingly using this approach to chemical kinetics in the analysis of cellular systems in biology, where the small molecular populations of only a few reactant species can lead to deviations from the predictions of the deterministic differential equations of classical chemical kinetics. After reviewing the supporting theory of stochastic chemical kinetics, I discuss some recent advances in methods for using that theory to make numerical simulations. These include improvements to the exact stochastic simulation algorithm (SSA) and the approximate explicit tau-leaping procedure, as well as the development of two approximate strategies for simulating systems that are dynamically stiff: implicit tau-leaping and the slow-scale SSA.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The chemical Langevin equation

                Bookmark

                Author and article information

                Journal
                BMC Syst Biol
                BMC Systems Biology
                BioMed Central
                1752-0509
                2010
                21 July 2010
                : 4
                : 99
                Affiliations
                [1 ]Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA
                [2 ]Department of Mathematics, University of California, Irvine, CA 92617, USA
                [3 ]Department of Computer Science, University of California, Irvine, CA 92617, USA
                [4 ]Center for Complex Biological Systems, University of California, Irvine, CA 92617, USA
                [5 ]Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92617, USA
                Article
                1752-0509-4-99
                10.1186/1752-0509-4-99
                2914651
                20663171
                f8e407fa-10fb-4029-916f-e814dab6d4d2
                Copyright ©2010 Wang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 February 2010
                : 21 July 2010
                Categories
                Methodology Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article