25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although ischemic heart disease is the major cause of death in diabetic patients, diabetic cardiomyopathy (DCM) is increasingly recognized as a clinically relevant entity. Considering that it comprises a variety of mechanisms and effects on cardiac function, increasing the risk of heart failure and worsening the prognosis of this patient category, DCM represents an important complication of diabetes mellitus, with a silent development in its earlier stages, involving intricate pathophysiological mechanisms, including oxidative stress, defective calcium handling, altered mitochondrial function, remodeling of the extracellular matrix, and consequent deficient cardiomyocyte contractility. While DCM is common in diabetic asymptomatic patients, it is frequently underdiagnosed, due to few diagnostic possibilities in its early stages. Moreover, since a strategy for prevention and treatment in order to improve the prognosis of DCM has not been established, it is important to identify clear pathophysiological landmarks, to pinpoint the available diagnostic possibilities and to spot potential therapeutic targets.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance.

          Toll-like receptor 4 (TLR4) has a key role in innate immunity by activating an inflammatory signaling pathway. Free fatty acids (FFAs) stimulate adipose tissue inflammation through the TLR4 pathway, resulting in insulin resistance. However, current evidence suggests that FFAs do not directly bind to TLR4, but an endogenous ligand for TLR4 remains to be identified. Here we show that fetuin-A (FetA) could be this endogenous ligand and that it has a crucial role in regulating insulin sensitivity via Tlr4 signaling in mice. FetA (officially known as Ahsg) knockdown in mice with insulin resistance caused by a high-fat diet (HFD) resulted in downregulation of Tlr4-mediated inflammatory signaling in adipose tissue, whereas selective administration of FetA induced inflammatory signaling and insulin resistance. FFA-induced proinflammatory cytokine expression in adipocytes occurred only in the presence of both FetA and Tlr4; removing either of them prevented FFA-induced insulin resistance. We further found that FetA, through its terminal galactoside moiety, directly binds the residues of Leu100-Gly123 and Thr493-Thr516 in Tlr4. FFAs did not produce insulin resistance in adipocytes with mutated Tlr4 or galactoside-cleaved FetA. Taken together, our results suggest that FetA fulfills the requirement of an endogenous ligand for TLR4 through which lipids induce insulin resistance. This may position FetA as a new therapeutic target for managing insulin resistance and type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Diabetic Downregulation of Nrf2 Activity via ERK Contributes to Oxidative Stress–Induced Insulin Resistance in Cardiac Cells In Vitro and In Vivo

            OBJECTIVE Oxidative stress is implicated in cardiac insulin resistance, a critical risk factor for cardiac failure, but the direct evidence remains missing. This study explored a causal link between oxidative stress and insulin resistance with a focus on a regulatory role of redox sensitive transcription factor NF-E2–related factor 2 (Nrf2) in the cardiac cells in vitro and in vivo. RESEARCH DESIGN AND METHODS Chronic treatment of HL-1 adult cardiomyocyte with hydrogen peroxide led to insulin resistance, reflected by a significant suppression of the insulin-induced glucose uptake. This was associated with an exaggerated phosphorylation of extracellular signal–related kinase (ERK). Although U0126, an ERK inhibitor, enhanced insulin sensitivity and attenuated oxidative stress–induced insulin resistance, LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), worsened the insulin resistance. Moreover, insulin increased Nrf2 transcriptional activity, which was blocked by LY294002 but enhanced by U0126. Forced activation of Nrf2 by adenoviral over-expression of Nrf2 inhibited the increased ERK activity and recovered the blunted insulin sensitivity on glucose uptake in cardiomyocytes that were chronically treated with H2O2. In the hearts of streptozotocin-induced diabetic mice and diabetic patients Nrf2 expression significantly decreased along with significant increases in 3-nitrotyrosine accumulation and ERK phosphorylation, whereas these pathogenic changes were not observed in the heart of diabetic mice with cardiac-specific overexpression of a potent antioxidant metallothionein. Upregulation of Nrf2 by its activator, Dh404, in cardiomyocytes in vitro and in vivo prevented hydrogen peroxide– and diabetes-induced ERK activation and insulin-signaling downregulation. CONCLUSIONS ERK-mediated suppression of Nrf2 activity leads to the oxidative stress–induced insulin resistance in adult cardiomyocytes and downregulated glucose utilization in the diabetic heart.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetic cardiomyopathy: pathophysiology and clinical features

              Since diabetic cardiomyopathy was first reported four decades ago, substantial information on its pathogenesis and clinical features has accumulated. In the heart, diabetes enhances fatty acid metabolism, suppresses glucose oxidation, and modifies intracellular signaling, leading to impairments in multiple steps of excitation–contraction coupling, inefficient energy production, and increased susceptibility to ischemia/reperfusion injury. Loss of normal microvessels and remodeling of the extracellular matrix are also involved in contractile dysfunction of diabetic hearts. Use of sensitive echocardiographic techniques (tissue Doppler imaging and strain rate imaging) and magnetic resonance spectroscopy enables detection of diabetic cardiomyopathy at an early stage, and a combination of the modalities allows differentiation of this type of cardiomyopathy from other organic heart diseases. Circumstantial evidence to date indicates that diabetic cardiomyopathy is a common but frequently unrecognized pathological process in asymptomatic diabetic patients. However, a strategy for prevention or treatment of diabetic cardiomyopathy to improve its prognosis has not yet been established. Here, we review both basic and clinical studies on diabetic cardiomyopathy and summarize problems remaining to be solved for improving management of this type of cardiomyopathy.
                Bookmark

                Author and article information

                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2017
                21 March 2017
                : 2017
                : 1310265
                Affiliations
                1Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
                2Gastroenterology Department, “Sf. Spiridon” County Clinical Emergency Hospital, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
                33rd Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, Iasi, Romania
                Author notes

                Academic Editor: Christian Trummer

                Author information
                http://orcid.org/0000-0002-1394-8648
                http://orcid.org/0000-0002-9240-2175
                Article
                10.1155/2017/1310265
                5379137
                28421204
                f8e49376-c1bf-42ec-807f-c6eb6a02a2aa
                Copyright © 2017 Georgiana-Emmanuela Gilca et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 December 2016
                : 2 March 2017
                : 9 March 2017
                Categories
                Review Article

                Comments

                Comment on this article