29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System x c Mediates Aglycemic Neuronal Cell Death

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The astrocyte cystine/glutamate antiporter (system x c ) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system x c expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes—either cultured alone or with neurons—to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system x c mediates aglycemic neuronal cell death.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Glutamate uptake.

          Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities.

            The antiporter system x(c)(-) imports the amino acid cystine, the oxidized form of cysteine, into cells with a 1:1 counter-transport of glutamate. It is composed of a light chain, xCT, and a heavy chain, 4F2 heavy chain (4F2hc), and, thus, belongs to the family of heterodimeric amino acid transporters. Cysteine is the rate-limiting substrate for the important antioxidant glutathione (GSH) and, along with cystine, it also forms a key redox couple on its own. Glutamate is a major neurotransmitter in the central nervous system (CNS). By phylogenetic analysis, we show that system x(c)(-) is a rather evolutionarily new amino acid transport system. In addition, we summarize the current knowledge regarding the molecular mechanisms that regulate system x(c)(-), including the transcriptional regulation of the xCT light chain, posttranscriptional mechanisms, and pharmacological inhibitors of system x(c)(-). Moreover, the roles of system x(c)(-) in regulating GSH levels, the redox state of the extracellular cystine/cysteine redox couple, and extracellular glutamate levels are discussed. In vitro, glutamate-mediated system x(c)(-) inhibition leads to neuronal cell death, a paradigm called oxidative glutamate toxicity, which has successfully been used to identify neuroprotective compounds. In vivo, xCT has a rather restricted expression pattern with the highest levels in the CNS and parts of the immune system. System x(c)(-) is also present in the eye. Moreover, an elevated expression of xCT has been reported in cancer. We highlight the diverse roles of system x(c)(-) in the regulation of the immune response, in various aspects of cancer and in the eye and the CNS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Astrocyte glutamate transport: review of properties, regulation, and physiological functions.

              Rapid removal of glutamate from the extracellular space is required for the survival and normal function of neurons. Although glutamate transporters are expressed by all CNS cell types, astrocytes are the cell type primarily responsible for glutamate uptake. Astrocyte glutamate uptake also plays a role in regulating the activity of glutamatergic synapses. Lastly, release of glutamate from astrocytes, via transporter reversal and other routes, can contribute to glutamate receptor activation. This review examines the mechanisms of astrocyte glutamate uptake and release, with particular focus on high-affinity Na(+)-dependent transporters. Transporter regulation, energetics, and physiological roles are discussed.
                Bookmark

                Author and article information

                Journal
                ASN Neuro
                ASN Neuro
                ASN
                spasn
                ASN NEURO
                SAGE Publications (Sage CA: Los Angeles, CA )
                1759-0914
                3 November 2015
                Nov-Dec 2015
                : 7
                : 6
                : 1759091415614301
                Affiliations
                [1 ]Department of Biology, Program in Neuroscience, Syracuse University, NY, USA
                [2 ]Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
                [3 ]Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
                [4 ]Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
                [5-1759091415614301]Nicole A. Jackman is now at Department of Anesthesia & Perioperative Care, University of California San Francisco, CA
                Author notes
                [*]Sandra J. Hewett, Life Sciences Complex, Room 110, 107 College Place, Syracuse, NY 13244, USA. Email: shewett@ 123456syr.edu
                Article
                10.1177_1759091415614301
                10.1177/1759091415614301
                4641554
                26553727
                f8eca4fe-80a2-4bc6-9bca-264100b2f2eb
                © The Author(s) 2015

                This article is distributed under the terms of the Creative Commons Attribution 3.0 License ( http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                Categories
                Original Article
                Custom metadata
                November-December 2015

                Neurosciences
                aglycemia,cystine,glutamate,neuronal injury,glucose deprivation,cell culture
                Neurosciences
                aglycemia, cystine, glutamate, neuronal injury, glucose deprivation, cell culture

                Comments

                Comment on this article