+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Detection of Gene Coexpression Domains Showing Linkage to Regions Enriched with Polymorphic Retrotransposons in Recombinant Inbred Mouse Strains

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Although gene coexpression domains have been reported in most eukaryotic organisms, data available to date suggest that coexpression rarely concerns more than doublets or triplets of adjacent genes in mammals. Using expression data from hearts of mice from the panel of AxB/BxA recombinant inbred mice, we detected (according to window sizes) 42−53 loci linked to the expression levels of clusters of three or more neighboring genes. These loci thus formed “ cis-expression quantitative trait loci (eQTL) clusters” because their position matched that of the genes whose expression was linked to the loci. Compared with matching control regions, genes contained within cis-eQTL clusters showed much greater levels of coexpression. Corresponding regions showed: (1) a greater abundance of polymorphic elements (mostly short interspersed element retrotransposons), and (2) significant enrichment for the motifs of binding sites for various transcription factors, with binding sites for the chromatin-organizing CCCTC-binding factor showing the greatest levels of enrichment in polymorphic short interspersed elements. Similar cis-eQTL clusters also were detected when we used data obtained with several tissues from BxD recombinant inbred mice. In addition to strengthening the evidence for gene expression domains in mammalian genomes, our data suggest a possible mechanism whereby noncoding polymorphisms could affect the coordinate expression of several neighboring genes.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          An Integrated Encyclopedia of DNA Elements in the Human Genome

          Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research.
            • Record: found
            • Abstract: found
            • Article: not found

            Finding the missing heritability of complex diseases.

            Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
              • Record: found
              • Abstract: found
              • Article: not found

              Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions

              The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories (CT), and numerous models have been proposed for how chromosomes fold within CTs 1 . These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid revolutions in the study of 3D genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide 2 . In the present study, we investigated the 3D organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term “topological domains”, as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, suggesting that topological domains are an inherent property of mammalian genomes. Lastly, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, tRNAs, and SINE retrotransposons, suggesting that these factors may play a role in establishing the topological domain structure of the genome.

                Author and article information

                G3 (Bethesda)
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                1 April 2013
                April 2013
                : 3
                : 4
                : 597-605
                Cardiovascular Biology Research Unit, Institut de recherches cliniques de Montréal (IRCM) and Université de Montréal, Montréal, Québec, H2W 1R7, Canada
                Author notes

                Supporting information is available online at

                Processed data from this article have been submitted for public access to GeneNetwork (; accession number GN421).

                [1 ]Corresponding author: IRCM, 110, avenue des Pins Ouest, Montréal (QC), Canada H2W 1R7. E-mail: deschec@
                Copyright © 2013 Scott-Boyer, Deschepper

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Pages: 9
                Custom metadata


                Comment on this article