6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Proof-of-Concept Trial of an Amniotic Fluid-derived Extracellular Vesicle Biologic for Treating High Risk Patients with Mild-to-Moderate Acute COVID-19 Infection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A pandemic brought on by COVID-19 has created a scalable health crisis. The search to help alleviate COVID-19-related complications through therapeutics has become a necessity. Zofin is an investigational, acellular biologic derived from full-term perinatal amniotic fluid that contains extracellular vesicles. Extracellular nanoparticles as such have been studied for their immunomodulatory benefits via cellular therapeutics and, if applied to COVID-19-related inflammation, could benefit patient outcome. Subjects (n=8) experiencing mild-to-moderate COVID-19 symptoms were treated with the experimental intervention. Complete blood count, complete metabolic panel, inflammatory biomarkers, and absolute lymphocyte counts were recorded prior to and on days 4, 8, 14, 21, and 30 as markers of disease progression. Additionally, chest x-rays were taken of the patients prior to and on days 8 and 30. Patients experienced no serious adverse events. All COVID-19-associated symptoms resolved or became stable with no indication of disease worsening as found by patient and chest x-ray reports. Inflammatory biomarkers (CRP, IL-6, TNF- α ) and absolute lymphocyte counts improved throughout the study period. Findings from a proof-of-concept, expanded access trial for COVID-19 patients prove the acellular biologic is safe and potentially effective to prevent disease progression in a high-risk COVID-19 population with mild-to-moderate symptoms.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new coronavirus associated with human respiratory disease in China

          Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1–3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application

            Background: A novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in China in December 2019. There is limited support for many of its key epidemiologic features, including the incubation period for clinical disease (coronavirus disease 2019 [COVID-19]), which has important implications for surveillance and control activities. Objective: To estimate the length of the incubation period of COVID-19 and describe its public health implications. Design: Pooled analysis of confirmed COVID-19 cases reported between 4 January 2020 and 24 February 2020. Setting: News reports and press releases from 50 provinces, regions, and countries outside Wuhan, Hubei province, China. Participants: Persons with confirmed SARS-CoV-2 infection outside Hubei province, China. Measurements: Patient demographic characteristics and dates and times of possible exposure, symptom onset, fever onset, and hospitalization. Results: There were 181 confirmed cases with identifiable exposure and symptom onset windows to estimate the incubation period of COVID-19. The median incubation period was estimated to be 5.1 days (95% CI, 4.5 to 5.8 days), and 97.5% of those who develop symptoms will do so within 11.5 days (CI, 8.2 to 15.6 days) of infection. These estimates imply that, under conservative assumptions, 101 out of every 10 000 cases (99th percentile, 482) will develop symptoms after 14 days of active monitoring or quarantine. Limitation: Publicly reported cases may overrepresent severe cases, the incubation period for which may differ from that of mild cases. Conclusion: This work provides additional evidence for a median incubation period for COVID-19 of approximately 5 days, similar to SARS. Our results support current proposals for the length of quarantine or active monitoring of persons potentially exposed to SARS-CoV-2, although longer monitoring periods might be justified in extreme cases. Primary Funding Source: U.S. Centers for Disease Control and Prevention, National Institute of Allergy and Infectious Diseases, National Institute of General Medical Sciences, and Alexander von Humboldt Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus

              The recent emergence of Wuhan coronavirus (2019-nCoV) puts the world on alert. 2019-nCoV is reminiscent of the SARS-CoV outbreak in 2002 to 2003. Our decade-long structural studies on the receptor recognition by SARS-CoV have identified key interactions between SARS-CoV spike protein and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. One of the goals of SARS-CoV research was to build an atomic-level iterative framework of virus-receptor interactions to facilitate epidemic surveillance, predict species-specific receptor usage, and identify potential animal hosts and animal models of viruses. Based on the sequence of 2019-nCoV spike protein, we apply this predictive framework to provide novel insights into the receptor usage and likely host range of 2019-nCoV. This study provides a robust test of this reiterative framework, providing the basic, translational, and public health research communities with predictive insights that may help study and battle this novel 2019-nCoV.
                Bookmark

                Author and article information

                Journal
                Biomater Biosyst
                Biomater Biosyst
                Biomaterials and Biosystems
                Published by Elsevier Ltd.
                2666-5344
                24 November 2021
                24 November 2021
                : 100031
                Affiliations
                [1 ]Organicell Regenerative Medicine, Miami, FL. 33136
                [2 ]Assure Immune LLC., Miami, FL. 33136
                [3 ]United Memorial Medical Center, Houston, TX. 77091
                Author notes
                [* ]Corresponding Author: Maria Ines Mitrani, MD, PhD, Organicell Regenerative Medicine, Inc. 1951 Northwest 7th Ave, Suite #300, Miami, FL, 33136
                Article
                S2666-5344(21)00024-6 100031
                10.1016/j.bbiosy.2021.100031
                8611818
                34841370
                f8f0c637-edbe-4d0b-bb49-99d76f46bd05
                © 2021 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                covid-19,expanded access,therapeutic,extracellular vesicles,biologic

                Comments

                Comment on this article