56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Micro RNAs of Epstein-Barr Virus Promote Cell Cycle Progression and Prevent Apoptosis of Primary Human B Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular and viral microRNAs (miRNAs) are involved in many different processes of key importance and more than 10,000 miRNAs have been identified so far. In general, relatively little is known about their biological functions in mammalian cells because their phenotypic effects are often mild and many of their targets still await identification. The recent discovery that Epstein-Barr virus (EBV) and other herpesviruses produce their own, barely conserved sets of miRNAs suggests that these viruses usurp the host RNA silencing machinery to their advantage in contrast to the antiviral roles of RNA silencing in plants and insects. We have systematically introduced mutations in EBV's precursor miRNA transcripts to prevent their subsequent processing into mature viral miRNAs. Phenotypic analyses of these mutant derivatives of EBV revealed that the viral miRNAs of the BHRF1 locus inhibit apoptosis and favor cell cycle progression and proliferation during the early phase of infected human primary B cells. Our findings also indicate that EBV's miRNAs are not needed to control the exit from latency. The phenotypes of viral miRNAs uncovered by this genetic analysis indicate that they contribute to EBV-associated cellular transformation rather than regulate viral genes of EBV's lytic phase.

          Author Summary

          Micro RNAs (miRNAs) are small, non-coding RNAs that bind to mRNA transcripts and abrogate their protein coding functions. Only a few of their mRNA targets are known, although miRNAs are found in all multicellular organisms and certain viruses. In particular, members of the herpesvirus family encode a surprisingly large number of miRNAs. Epstein-Barr virus (EBV) belongs to this virus family and is associated with several human malignancies including B-cell lymphomas. In vitro, this virus infects human primary B cells and transforms them into continuously proliferating lymphoblastoid cell lines (LCL), which is an amenable model covering key aspects of cellular transformation and lymphomagenesis. To assess the roles of EBV's miRNAs in this model, we generated EBV mutants that lack the capacity to encode viral miRNAs. Phenotypic analysis of human primary B cells infected with these mutant viruses revealed that miRNAs encoded in EBV's BHRF1 locus strongly promote B cell proliferation, regulate cell cycle functions, and prevent apoptosis early after infection. Our findings show that EBV has evolved discrete miRNAs to contribute to its well-known transforming capacity, which has not been appreciated previously.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs

          MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 μl of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accumulation of miR-155 and BIC RNA in human B cell lymphomas.

            We show that the microRNA miR-155 can be processed from sequences present in BIC RNA, a spliced and polyadenylated but non-protein-coding RNA that accumulates in lymphoma cells. The precursor of miR-155 is likely a transient spliced or unspliced nuclear BIC transcript rather than accumulated BIC RNA, which is primarily cytoplasmic. By using a sensitive and quantitative assay, we find that clinical isolates of several types of B cell lymphomas, including diffuse large B cell lymphoma (DLBCL), have 10- to 30-fold higher copy numbers of miR-155 than do normal circulating B cells. Similarly, the quantities of BIC RNA are elevated in lymphoma cells, but ratios of the amounts of the two RNAs are not constant, suggesting that the level of miR-155 is controlled by transcription and processing. Significantly higher levels of miR-155 are present in DLBCLs with an activated B cell phenotype than with the germinal center phenotype. Because patients with activated B cell-type DLBCL have a poorer clinical prognosis, quantification of this microRNA may be diagnostically useful.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              microRNA target predictions in animals.

              In recent years, microRNAs (miRNAs) have emerged as a major class of regulatory genes, present in most metazoans and important for a diverse range of biological functions. Because experimental identification of miRNA targets is difficult, there has been an explosion of computational target predictions. Although the initial round of predictions resulted in very diverse results, subsequent computational and experimental analyses suggested that at least a certain class of conserved miRNA targets can be confidently predicted and that this class of targets is large, covering, for example, at least 30% of all human genes when considering about 60 conserved vertebrate miRNA gene families. Most recent approaches have also shown that there are correlations between domains of miRNA expression and mRNA levels of their targets. Our understanding of miRNA function is still extremely limited, but it may be that by integrating mRNA and miRNA sequence and expression data with other comparative genomic data, we will be able to gain global and yet specific insights into the function and evolution of a broad layer of post-transcriptional control.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2010
                August 2010
                19 August 2010
                : 6
                : 8
                : e1001063
                Affiliations
                [1 ]Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
                [2 ]Clinical Cooperation Group Molecular Oncology, Ludwig Maximilians-University Munich and Helmholtz Zentrum München, German Research Center for Environment and Health, Munich, Germany
                [3 ]Institute for Clinical and Molecular Biology, Helmholtz Zentrum München, German Research Center for Environment and Health, Munich, Germany
                [4 ]Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
                Emory University, United States of America
                Author notes

                Conceived and designed the experiments: ES WH. Performed the experiments: ES SG. Analyzed the data: ES AM AG WH. Contributed reagents/materials/analysis tools: SG NW AG. Wrote the paper: ES AM AG WH.

                Article
                10-PLPA-RA-2995R3
                10.1371/journal.ppat.1001063
                2924374
                20808852
                f8fdbc85-4029-4fb7-abf5-e8979899c056
                Seto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 March 2010
                : 22 July 2010
                Page count
                Pages: 16
                Categories
                Research Article
                Cell Biology/Cell Growth and Division
                Oncology/Hematological Malignancies
                Virology/Persistence and Latency
                Virology/Virulence Factors and Mechanisms
                Virology/Viruses and Cancer

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article