85
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis.

      Nature materials

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Controlling surface structure at the atomic scale is paramount to developing effective catalysts. For example, the edge sites of MoS(2) are highly catalytically active and are thus preferred at the catalyst surface over MoS(2) basal planes, which are inert. However, thermodynamics favours the presence of the basal plane, limiting the number of active sites at the surface. Herein, we engineer the surface structure of MoS(2) to preferentially expose edge sites to effect improved catalysis by successfully synthesizing contiguous large-area thin films of a highly ordered double-gyroid MoS(2) bicontinuous network with nanoscaled pores. The high surface curvature of this catalyst mesostructure exposes a large fraction of edge sites, which, along with its high surface area, leads to excellent activity for electrocatalytic hydrogen evolution. This work elucidates how morphological control of materials at the nanoscale can significantly impact the surface structure at the atomic scale, enabling new opportunities for enhancing surface properties for catalysis and other important technological applications.

          Related collections

          Author and article information

          Journal
          23042413
          10.1038/nmat3439

          Comments

          Comment on this article