8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultra-small NIR-Responsive Nanotheranostic Agent for Targeted Photothermal Ablation Induced Damage-Associated Molecular Patterns (DAMPs) from Post-PTT of Tumor Cells Activate Immunogenic Cell Death

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Theranostic nanoparticles (TNPs) is an efficient avenue that culminates both diagnosis and therapy into cancer treatment. Herein, we have formulated a theranostic nanocomposite (NC) with CuS being the ultra-small core component. To ensure stability to the NC, PEI was added which is a vital anchoring group polymer, especially on sulfide surfaces, and adds quality by being a better stabilizer and reducing agent. Additionally, to add stability, specificity, and added photothermal efficiency to the fabricated NC. In addition, encapsulation of indocyanine green (ICG), an efficient NIR absorber, and Folic acid (FA) were conjugated systematically, characterized, and analyzed for photo-stability. The photothermal conversion efficiency of the novel NC (CuS-PEI-ICG-FA) was analyzed at 808 nm, where the NC efficiently converted light energy to heat energy. The NC was also tested for hemocompatibility to clarify and also determined biocompatibility. Surprisingly, damage-associated molecular patterns (DAMPs) from post-PTT of tumor cells activate immunogenic cell death (ICD) for tumor-specific immune responses. The deserving photothermal performance and photo-stability makes the NC an ideal platform for photoacoustic imaging (PAI). A superior contrast was observed for PAI in a concentration-dependent manner enhancing the level of penetration into tissues, thereby better imaging. On account of this study, the newly formulated NC could be utilized as a nanotheranostic designed for therapeutic and image diagnostic agent of cancer biomedical applications.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Immunogenic cell death and DAMPs in cancer therapy.

          Although it was thought that apoptotic cells, when rapidly phagocytosed, underwent a silent death that did not trigger an immune response, in recent years a new concept of immunogenic cell death (ICD) has emerged. The immunogenic characteristics of ICD are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface-exposed calreticulin (CRT), secreted ATP and released high mobility group protein B1 (HMGB1). Most DAMPs can be recognized by pattern recognition receptors (PRRs). In this Review, we discuss the role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in regulating the immunogenicity of dying cancer cells and the effect of therapy-resistant cancer microevolution on ICD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging and drug delivery using theranostic nanoparticles.

            Nanoparticle technologies are significantly impacting the development of both therapeutic and diagnostic agents. At the intersection between treatment and diagnosis, interest has grown in combining both paradigms into clinically effective formulations. This concept, recently coined as theranostics, is highly relevant to agents that target molecular biomarkers of disease and is expected to contribute to personalized medicine. Here we review state-of-the-art nanoparticles from a therapeutic and a diagnostic perspective and discuss challenges in bringing these fields together. Major classes of nanoparticles include, drug conjugates and complexes, dendrimers, vesicles, micelles, core-shell particles, microbubbles, and carbon nanotubes. Most of these formulations have been described as carriers of either drugs or contrast agents. To observe these formulations and their interactions with disease, a variety of contrast agents have been used, including optically active small molecules, metals and metal oxides, ultrasonic contrast agents, and radionuclides. The opportunity to rapidly assess and adjust treatment to the needs of the individual offers potential advantages that will spur the development of theranostic agents. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Targeting immunogenic cell death in cancer

              Immunogenic cell death (ICD) is a type of cancer cell death triggered by certain chemotherapeutic drugs, oncolytic viruses, physicochemical therapies, photodynamic therapy, and radiotherapy. It involves the activation of the immune system against cancer in immunocompetent hosts. ICD comprises the release of damage‐associated molecular patterns (DAMPs) from dying tumor cells that result in the activation of tumor‐specific immune responses, thus eliciting long‐term efficacy of anticancer drugs by combining direct cancer cell killing and antitumor immunity. Remarkably, subcutaneous injection of dying tumor cells undergoing ICD has been shown to provoke anticancer vaccine effects in vivo. DAMPs include the cell surface exposure of calreticulin (CRT) and heat‐shock proteins (HSP70 and HSP90), extracellular release of adenosine triphosphate (ATP), high‐mobility group box‐1 (HMGB1), type I IFNs and members of the IL‐1 cytokine family. In this review, we discuss the cell death modalities connected to ICD, the DAMPs exposed during ICD, and the mechanism by which they activate the immune system. Finally, we discuss the therapeutic potential and challenges of harnessing ICD in cancer immunotherapy.
                Bookmark

                Author and article information

                Journal
                Nanotheranostics
                Nanotheranostics
                ntno
                Nanotheranostics
                Ivyspring International Publisher (Sydney )
                2206-7418
                2023
                1 January 2023
                : 7
                : 1
                : 41-60
                Affiliations
                [1 ]Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), Department of Zoology, Bharathiar University, Coimbatore-641 046, TN, India.
                [2 ]Department of Biochemistry, Prof. Dhanapalan College of Science and Management, Chennai, India.
                Author notes
                ✉ Corresponding author: Raju Vivek, E-mail: vivekr@ 123456buc.edu.in . Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), Department of Zoology, Bharathiar University, Coimbatore-641 046, TN, India.

                *These authors contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ntnov07p0041
                10.7150/ntno.76720
                9760365
                36593797
                f906d293-58e3-4ef6-9400-75c6c8cf2db2
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 30 June 2022
                : 11 October 2022
                Categories
                Research Paper

                nanotheranostic,photothermal therapy,photoacoustic imaging,immunogenic cell death,cancer

                Comments

                Comment on this article