44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Cooperative Voltage Sensor Motion that Gates a Potassium Channel

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step ( Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel ( Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          X-ray structure of a voltage-dependent K+ channel.

          Voltage-dependent K+ channels are members of the family of voltage-dependent cation (K+, Na+ and Ca2+) channels that open and allow ion conduction in response to changes in cell membrane voltage. This form of gating underlies the generation of nerve and muscle action potentials, among other processes. Here we present the structure of KvAP, a voltage-dependent K+ channel from Aeropyrum pernix. We have determined a crystal structure of the full-length channel at a resolution of 3.2 A, and of the isolated voltage-sensor domain at 1.9 A, both in complex with monoclonal Fab fragments. The channel contains a central ion-conduction pore surrounded by voltage sensors, which form what we call 'voltage-sensor paddles'-hydrophobic, cationic, helix-turn-helix structures on the channel's outer perimeter. Flexible hinges suggest that the voltage-sensor paddles move in response to membrane voltage changes, carrying their positive charge across the membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure and mechanism of a calcium-gated potassium channel.

            Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K(+) channel that opens in response to intracellular Ca(2+). We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K(+) channel (MthK) from Methanobacterium thermoautotrophicum in the Ca(2+)-bound, opened state. Eight RCK domains (regulators of K(+) conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca(2+) binding in a simple manner to perform mechanical work to open the pore.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contribution of the S4 segment to gating charge in the Shaker K+ channel.

              Voltage-activated ion channels respond to changes in membrane voltage by coupling the movement of charges to channel opening. A K+ channel-specific radioligand was designed and used to determine the origin of these gating charges in the Shaker K+ channel. Opening of a Shaker K+ channel is associated with a displacement of 13.6 electron charge units. Gating charge contributions were determined for six of the seven positive charges in the S4 segment, an unusual amino acid sequence in voltage-activated cation channels consisting of repeating basic residues at every third position. Charge-neutralizing mutations of the first four positive charges led to large decreases (approximately 4 electron charge units each) in the gating charge; however, the gating charge of Shaker delta 10, a Shaker K+ channel with 10 altered nonbasic residues in its S4 segment, was found to be identical to the wild-type channel. These findings show that movement of the NH2-terminal half but not the CO2H-terminal end of the S4 segment underlies gating charge, and that this portion of the S4 segment appears to move across the entire transmembrane voltage difference in association with channel activation.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                January 2005
                : 125
                : 1
                : 57-69
                Affiliations
                [1 ]Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720
                [2 ]Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
                Author notes

                Correspondence to Ehud Y. Isacoff: eisacoff@ 123456socrates.berkeley.edu

                Article
                200409197
                10.1085/jgp.200409197
                1414780
                15623895
                f9130ade-db43-487f-88d6-44387693124f
                Copyright © 2005, The Rockefeller University Press
                History
                : 21 October 2004
                : 3 December 2004
                Categories
                Article

                Anatomy & Physiology
                coupling,s4,gating,cooperativity,potassium channel
                Anatomy & Physiology
                coupling, s4, gating, cooperativity, potassium channel

                Comments

                Comment on this article