100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,   , , , , ,
      Nature Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6 years of age in a total of 1,173 cases and 2,522 controls. Cases were identified from national health registries of hospitalization, and DNA was obtained from the Danish Neonatal Screening Biobank. We identified five loci with genome-wide significant association. Four of these, GSDMB, IL33, RAD50 and IL1RL1, were previously reported as asthma susceptibility loci, but the effect sizes for these loci in our cohort were considerably larger than in the previous genome-wide association studies of asthma. We also obtained strong evidence for a new susceptibility gene, CDHR3 (encoding cadherin-related family member 3), which is highly expressed in airway epithelium. These results demonstrate the strength of applying specific phenotyping in the search for asthma susceptibility genes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification.

          Genes are often characterized dichotomously as either housekeeping or single-tissue specific. We conjectured that crucial functional information resides in genes with midrange profiles of expression. To obtain such novel information genome-wide, we have determined the mRNA expression levels for one of the largest hitherto analyzed set of 62 839 probesets in 12 representative normal human tissues. Indeed, when using a newly defined graded tissue specificity index tau, valued between 0 for housekeeping genes and 1 for tissue-specific genes, genes with midrange profiles having 0.15 50% of all expression patterns. We developed a binary classification, indicating for every gene the I(B) tissues in which it is overly expressed, and the 12-I(B) tissues in which it shows low expression. The 85 dominant midrange patterns with I(B)=2-11 were found to be bimodally distributed, and to contribute most significantly to the definition of tissue specification dendrograms. Our analyses provide a novel route to infer expression profiles for presumed ancestral nodes in the tissue dendrogram. Such definition has uncovered an unsuspected correlation, whereby de novo enhancement and diminution of gene expression go hand in hand. These findings highlight the importance of gene suppression events, with implications to the course of tissue specification in ontogeny and phylogeny. All data and analyses are publically available at the GeneNote website, http://genecards.weizmann.ac.il/genenote/ and, GEO accession GSE803. doron.lancet@weizmann.ac.il Four tables available at the above site.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease.

            Clinical asthma is very widely assumed to be the net result of excessive inflammation driven by aberrant T-helper-2 (Th2) immunity that leads to inflamed, remodelled airways and then functional derangement that, in turn, causes symptoms. This notion of disease is actually poorly supported by data, and there are substantial discrepancies and very poor correlation between inflammation, damage, functional impairment, and degree of symptoms. Furthermore, this problem is compounded by the poor understanding of the heterogeneity of clinical disease. Failure to recognise and discover the underlying mechanisms of these major variants or endotypes of asthma is, arguably, the major intellectual limitation to progress at present. Fortunately, both clinical research and animal models are very well suited to dissecting the cellular and molecular basis of disease endotypes. This approach is already suggesting entirely novel pathways to disease-eg, alternative macrophage specification, steroid refractory innate immunity, the interleukin-17-regulatory T-cell axis, epidermal growth factor receptor co-amplification, and Th2-mimicking but non-T-cell, interleukins 18 and 33 dependent processes that can offer unexpected therapeutic opportunities for specific patient endotypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The sentinel role of the airway epithelium in asthma pathogenesis.

              The adoption of the concept that asthma is primarily a disease most frequently associated with elaboration of T-helper 2 (Th2)-type inflammation has led to the widely held concept that its origins, exacerbation, and persistence are allergen driven. Taking aside the asthma that is expressed in non-allergic individuals leaves the great proportion of asthma that is associated with allergy (or atopy) and that often has its onset in early childhood. Evidence is presented that asthma is primarily an epithelial disorder and that its origin as well as its clinical manifestations have more to do with altered epithelial physical and functional barrier properties than being purely linked to allergic pathways. In genetically susceptible individuals, impaired epithelial barrier function renders the airways vulnerable to early life virus infection, and this in turn provides the stimulus to prime immature dendritic cells toward directing a Th2 response and local allergen sensitization. Continued epithelial susceptibility to environmental insults such as viral, allergen, and pollutant exposure and impaired repair responses leads to asthma persistence and provides the mediator and growth factor microenvironment for persistence of inflammation and airway wall remodeling. Increased deposition of matrix in the epithelial lamina reticularis provides evidence for ongoing epithelial barrier dysfunction, while physical distortion of the epithelium consequent upon repeated bronchoconstriction provides additional stimuli for remodeling. This latter response initially serves a protective function but, if exaggerated, may lead to fixed airflow obstruction associated with more severe and chronic disease. Dual pathways in the origins, persistence, and progression of asthma help explain why anti-inflammatory treatments fail to influence the natural history of asthma in childhood and only partially does so in chronic severe disease. Positioning the airway epithelium as fundamental to the origins and persistence of asthma provides a rationale for pursuit of therapeutics that increase the resistance of the airways to environmental insults rather than concentrating all effort on suppressing inflammation. © 2011 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                January 2014
                November 17 2013
                January 2014
                : 46
                : 1
                : 51-55
                Article
                10.1038/ng.2830
                24241537
                f915e9cd-1894-4031-a47d-fd4532a2e10c
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article