44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electron tomography reveals the structural organization of actin comet tails generated by a baculovirus, providing an understanding of how this pathogen hijacks host machinery to propel itself between cells.

          Abstract

          Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.

          Author Summary

          Several bacteria and viruses hijack the motile machinery of cells they invade to generate networks of actin filaments (comet tails) to propel themselves from one cell to another. A proper understanding of the mechanism of propulsion has so far been hampered by a lack of information about the structure of the machinery. Using electron tomography we present here the three-dimensional structure of actin comet tails propelling a baculovirus, the smallest pathogen known to recruit the actin nano-machinery. We show that baculovirus is propelled by a fishbone-like array of actin filaments constructed from subsets linked by branch junctions, with an average of four filaments pushing the virus by their fast polymerizing ends at any one time. Using a stochastic mathematical model we have simulated comet tail organization as well as the tracks adopted by baculovirus inside cells. The simulations support a model of baculovirus propulsion in which the actin filaments are continuously tethered to the virus surface as they grow, branch, and push. Since larger pathogens like Listeria, Shigella, and Vaccinia virus generate comet tails exhibiting the same general morphology and components as those of baculovirus, the basic mechanism of their propulsion is likely a scaled up version of the one described here.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Reconstitution of actin-based motility of Listeria and Shigella using pure proteins.

          Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, alpha-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes

            Listeria monocytogenes was used as a model intracellular parasite to study stages in the entry, growth, movement, and spread of bacteria in a macrophage cell line. The first step in infection is phagocytosis of the Listeria, followed by the dissolution of the membrane surrounding the phagosome presumably mediated by hemolysin secreted by Listeria as nonhemolytic mutants remain in intact vacuoles. Within 2 h after infection, each now cytoplasmic Listeria becomes encapsulated by actin filaments, identified as such by decoration of the actin filaments with subfragment 1 of myosin. These filaments are very short. The Listeria grow and divide and the actin filaments rearrange to form a long tail (often 5 microns in length) extending from only one end of the bacterium, a "comet's tail," in which the actin filaments appear randomly oriented. The Listeria "comet" moves to the cell surface with its tail oriented towards the cell center and becomes incorporated into a cell extension with the Listeria at the tip of the process and its tail trailing into the cytoplasm behind it. This extension contacts a neighboring macrophage that phagocytoses the extension of the first macrophage. Thus, within the cytoplasm of the second macrophage is a Listeria with its actin tail surrounded by a membrane that in turn is surrounded by the phagosome membrane of the new host. Both these membranes are then solubilized by the Listeria and the cycle is repeated. Thus, once inside a host cell, the infecting Listeria and their progeny can spread from cell to cell by remaining intracellular and thus bypass the humoral immune system of the organism. To establish if actin filaments are essential for the spread of Listeria from cell to cell, we treated infected macrophages with cytochalasin D. The Listeria not only failed to spread, but most were found deep within the cytoplasm, rather than near the periphery of the cell. Thin sections revealed that the net of actin filaments is not formed nor is a "comet" tail produced.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes.

              The pathogenic bacterium Listeria monocytogenes is capable of directed movement within the cytoplasm of infected host cells. Propulsion is thought to be driven by actin polymerization at the bacterial cell surface, and moving bacteria leave in their wake a tail of actin filaments. Determining the mechanism by which L. monocytogenes polymerizes actin may aid the understanding of how actin polymerization is controlled in the cell. Actin assembly by L. monocytogenes requires the bacterial surface protein ActA and protein components present in host cell cytoplasm. We have purified an eight-polypeptide complex that possesses the properties of the host-cell actin polymerization factor. The pure complex is sufficient to initiate ActA-dependent actin polymerization at the surface of L. monocytogenes, and is required to mediate actin tail formation and motility. Two subunits of this protein complex are actin-related proteins (ARPs) belonging to the Arp2 and Arp3 subfamilies. The Arp3 subunit localizes to the surface of stationary bacteria and the tails of motile bacteria in tissue culture cells infected with L. monocytogenes; this is consistent with a role for the complex in promoting actin assembly in vivo. The activity and subunit composition of the Arp2/3 complex suggests that it forms a template that nucleates actin polymerization.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                January 2014
                January 2014
                14 January 2014
                : 12
                : 1
                : e1001765
                Affiliations
                [1 ]Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
                [2 ]RICAM, Austrian Academy of Sciences, Vienna, Austria
                [3 ]Faculty of Mathematics, University of Vienna, Austria
                [4 ]Nagoya University, Graduate School of Sciences, Structural Biology Research Center and Division of Biological Sciences, Nagoya, Japan
                [5 ]Nagoya University JST PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, Japan
                [6 ]Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
                [7 ]Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
                [8 ]Campus Science Support Facilities GmbH, Vienna, Austria
                Princeton University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: JVS JM JP CS. Performed the experiments: JM JP CL CW MN. Analyzed the data: JM JP JVS AN. Contributed reagents/materials/analysis tools: CL MFC AN YM TO MDW GPR JVS. Wrote the paper: JVS CS.

                Article
                PBIOLOGY-D-13-02468
                10.1371/journal.pbio.1001765
                3891563
                24453943
                f915f263-a220-4e06-bb48-fb93bc0b0fe6
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 June 2013
                : 3 December 2013
                Page count
                Pages: 14
                Funding
                This work was funded by the Austrian Science Fund (FWF): projects FWF 1516-B09 and FWF P21292-B09 (to JVS), the Vienna Science and Technology Fund (WWTF, to JVS and CS) and the Technology Promotion Agency of the City of Vienna (ZIT, to JVS and GPR). YM and AN acknowledge a Grant-in-Aid for Scientific Research (S) and AN further support from JST, PREST. MFC acknowledges financial support from a joint CNRS-JST grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Viral Transmission and Infection
                Host Cells
                Molecular Cell Biology
                Cellular Structures
                Cytoskeleton

                Life sciences
                Life sciences

                Comments

                Comment on this article