87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access
      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.

          Related collections

          Most cited references217

          • Record: found
          • Abstract: not found
          • Article: not found

          Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus

          (2002)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interaction between obesity and the gut microbiota: relevance in nutrition.

            This review examines mechanisms by which the bacteria present in the gut interact with nutrients and host biology to affect the risk of obesity and associated disorders, including diabetes, inflammation, and liver diseases. The bacterial metabolism of nutrients in the gut is able to drive the release of bioactive compounds (including short-chain fatty acids or lipid metabolites), which interact with host cellular targets to control energy metabolism and immunity. Animal and human data demonstrate that phylogenic changes occur in the microbiota composition in obese versus lean individuals; they suggest that the count of specific bacteria is inversely related to fat mass development, diabetes, and/or the low levels of inflammation associated with obesity. The prebiotic and probiotic approaches are presented as interesting research tools to counteract the drop in target bacteria and thereby to estimate their relevance in the improvement of host metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome

              Despite the lack of international agreement regarding the definition and classification of fiber, there is established evidence on the role of dietary fibers in obesity and metabolic syndrome. Beta glucan (β-glucan) is a soluble fiber readily available from oat and barley grains that has been gaining interest due to its multiple functional and bioactive properties. Its beneficial role in insulin resistance, dyslipidemia, hypertension, and obesity is being continuously documented. The fermentability of β-glucans and their ability to form highly viscous solutions in the human gut may constitute the basis of their health benefits. Consequently, the applicability of β-glucan as a food ingredient is being widely considered with the dual purposes of increasing the fiber content of food products and enhancing their health properties. Therefore, this paper explores the role of β-glucans in the prevention and treatment of characteristics of the metabolic syndrome, their underlying mechanisms of action, and their potential in food applications.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                29 November 2016
                December 2016
                : 5
                : 4
                Affiliations
                Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; mendel.friedman@ 123456ars.usda.gov ; Tel.: +1-510-559-5615
                Article
                foods-05-00080
                10.3390/foods5040080
                5302426
                28231175
                f931d0bd-fe8a-4eee-9b4e-b166cb9ac80f
                © 2016 by the author; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                bioactivity,biomarkers,polysaccharides,mushrooms,chemistry,antibiotics,obesity,diabetes,cancer,health-promoting food additives,functional food,research needs

                Comments

                Comment on this article