32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions.

          eLife digest

          Knowing where you are never hurts, be it during a holiday in New York or on a hiking trip in the Alps. Our sense of location seems to depend on a structure deep within the brain called the hippocampus, and its neighbor, the entorhinal cortex. Studies in rodents have shown that these areas act a little like an in-built GPS for the brain. They contain different types of neurons that help the animal to work out where it is and where it is going. Among those are place cells, present within the hippocampus, and grid cells and head direction cells, found within the entorhinal cortex and other areas.

          Place cells fire whenever an animal occupies a specific location in its environment, with each place cell firing at a different spot. Grid cells generate virtual maps of the surroundings that resemble grids of repeating triangles. Whenever an animal steps onto a corner of one of these virtual triangles, the grid cell that generated that map starts to fire. Head direction cells increase their firing whenever an animal’s head is pointing in a specific direction. These cell types thus provide animals with complementary information about their location. But how do the cells first become selective for specific places or head directions?

          Weber and Sprekeler propose that a single mechanism gives rise to the spatial characteristics of all these different types of cells. Like all neurons, these cells communicate with their neighbors at junctions called synapses. These may be either excitatory or inhibitory. Cells at excitatory synapses activate their neighbors, whereas cells at inhibitory synapses deactivate them. Weber and Sprekeler used a computer to simulate changes in excitatory and inhibitory synapses in a virtual rat exploring an environment. Interactions between the two types of synapses gave rise to virtual cells that behaved like place, grid or head direction cells. Which cell type emerged depended on whether the excitatory or the inhibitory synapses were more sensitive to the virtual rat’s location.

          This idea adds to a range of others proposed to explain how the brain codes for locations. Whether any of these ideas or a combination of them is correct remains to be determined. Further pieces are needed if we are to solve the puzzle of how the brain supports navigation.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Path integration and the neural basis of the 'cognitive map'.

            The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invariant visual representation by single neurons in the human brain.

              It takes a fraction of a second to recognize a person or an object even when seen under strikingly different conditions. How such a robust, high-level representation is achieved by neurons in the human brain is still unclear. In monkeys, neurons in the upper stages of the ventral visual pathway respond to complex images such as faces and objects and show some degree of invariance to metric properties such as the stimulus size, position and viewing angle. We have previously shown that neurons in the human medial temporal lobe (MTL) fire selectively to images of faces, animals, objects or scenes. Here we report on a remarkable subset of MTL neurons that are selectively activated by strikingly different pictures of given individuals, landmarks or objects and in some cases even by letter strings with their names. These results suggest an invariant, sparse and explicit code, which might be important in the transformation of complex visual percepts into long-term and more abstract memories.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                21 February 2018
                2018
                : 7
                : e34560
                Affiliations
                [1 ]deptModelling of Cognitive Processes, Institute of Software Engineering and Theoretical Computer Science Technische Universität Berlin BerlinGermany
                [2]University of California, Berkeley United States
                [3]University of California, Berkeley United States
                Author information
                http://orcid.org/0000-0002-1169-9879
                http://orcid.org/0000-0003-0690-3553
                Article
                34560
                10.7554/eLife.34560
                5927772
                29465399
                f93674ab-aacb-4f63-9707-f1cf66bf0db8
                © 2018, Weber et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 21 December 2017
                : 19 February 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002347, Bundesministerium für Bildung und Forschung;
                Award ID: FKZ 01GQ1201
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Neuroscience
                Custom metadata
                A large variety of spatial representations implied in rodent navigation could arise robustly and rapidly from inputs with a weak spatial structure, by an interaction of excitatory and inhibitory synaptic plasticity.

                Life sciences
                synaptic plasticity,inhibition,grid cells,place cells,hippocampal formation,computational neuroscience,none

                Comments

                Comment on this article