7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Luminescent Difluoroboron β-Diketonate PEG-PLA Oxygen Nanosensors for Tumor Imaging

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8074327e97">Surface modification of nanoparticles and biosensors is a dynamic, expanding area of research for targeted delivery in vivo. For more efficient delivery, surfaces are PEGylated to impart stealth properties, long circulation, and enable enhanced permeability and retention (EPR) in tumor tissues. Previously, BF2 dbm(I)PLA was proven to be a good oxygen nanosensor material for tumor hypoxia imaging in vivo, though particles were applied directly to the tumor and surrounding region. Further surface modification is needed for this dual-emissive oxygen sensitive material for effective intravenous (IV) administration and passive and active delivery to tumors. In this paper, an efficient synthesis of a new dual-emissive material BF2 dbm(I)PLA-mPEG is presented and in vitro stability studies are conducted. It is found that fabricated nanoparticles are stable for 24 weeks as a suspension, while after 25 weeks the nanoparticles swell and both dye and polymer degradation escalates. Preliminary studies show BF2 dbm(I)PLA-mPEG nanoparticle accumulation in a window chamber mammary tumor 24 h after IV injection into mice (C57Bl/6 strain) enabling tumor oxygen imaging. </p>

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogel nanoparticles in drug delivery.

          Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress.

            Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use. Significant progress has also been made with regard to better understanding the (patho-) physiological principles of drug targeting to tumors. This has led to the identification of several important pitfalls in tumor-targeted drug delivery, including I) overinterpretation of the EPR effect; II) poor tumor and tissue penetration of nanomedicines; III) misunderstanding of the potential usefulness of active drug targeting; IV) irrational formulation design, based on materials which are too complex and not broadly applicable; V) insufficient incorporation of nanomedicine formulations in clinically relevant combination regimens; VI) negligence of the notion that the highest medical need relates to metastasis, and not to solid tumor treatment; VII) insufficient integration of non-invasive imaging techniques and theranostics, which could be used to personalize nanomedicine-based therapeutic interventions; and VIII) lack of (efficacy analyses in) proper animal models, which are physiologically more relevant and more predictive for the clinical situation. These insights strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Simple Method for the Esterification of Carboxylic Acids

                Bookmark

                Author and article information

                Journal
                Macromolecular Rapid Communications
                Macromol. Rapid Commun.
                Wiley
                10221336
                April 2015
                April 2015
                March 09 2015
                : 36
                : 7
                : 694-699
                Affiliations
                [1 ]Department of Chemistry; University of Virginia; Charlottesville VA 22904 USA
                [2 ]Department of Radiation Oncology; Duke University; Durham NC 27710 USA
                [3 ]Department of Biomedical Engineering; Duke University; Durham NC 27710 USA
                [4 ]Department of Biomedical Engineering; University of Virginia; Charlottesville VA 22908
                Article
                10.1002/marc.201500022
                4620736
                25753154
                f937f362-7667-4ae1-9302-2eb999d16dbf
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article