41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29%) only a short-term survival (up to 7 to 14 days) was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%), soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The diversity and biogeography of soil bacterial communities.

          For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods.

            Food-borne Listeria monocytogenes is a serious threat to human health, and new strategies to combat this opportunistic pathogen in foods are needed. Bacteriophages are natural enemies of bacteria and are suitable candidates for the environmentally friendly biocontrol of these pathogens. In a comprehensive set of experiments, we have evaluated the virulent, broad-host-range phages A511 and P100 for control of L. monocytogenes strains Scott A (serovar 4b) and WSLC 1001 (serovar 1/2a) in different ready-to-eat (RTE) foods known to frequently carry the pathogen. Food samples were spiked with bacteria (1 x 10(3) CFU/g), phage added thereafter (3 x 10(6) to 3 x 10(8) PFU/g), and samples stored at 6 degrees C for 6 days. In liquid foods, such as chocolate milk and mozzarella cheese brine, bacterial counts rapidly dropped below the level of direct detection. On solid foods (hot dogs, sliced turkey meat, smoked salmon, seafood, sliced cabbage, and lettuce leaves), phages could reduce bacterial counts by up to 5 log units. Variation of the experimental conditions (extended storage over 13 days or storage at 20 degrees C) yielded similar results. In general, the application of more phage particles (3 x 10(8) PFU/g) was more effective than lower doses. The added phages retained most of their infectivity during storage in foods of animal origin, whereas plant material caused inactivation by more than 1 log(10). In conclusion, our data demonstrate that virulent broad-host-range phages, such as A511 and P100, can be very effective for specific biocontrol of L. monocytogenes in contamination-sensitive RTE foods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment.

              A case-control study involving 24 case farms with at least one recent case of listeriosis and 28 matched control farms with no listeriosis cases was conducted to probe the transmission and ecology of Listeria monocytogenes on farms. A total of 528 fecal, 516 feed, and 1,012 environmental soil and water samples were cultured for L. monocytogenes. While the overall prevalence of L. monocytogenes in cattle case farms (24.4%) was similar to that in control farms (20.2%), small-ruminant (goat and sheep) farms showed a significantly (P < 0.0001) higher prevalence in case farms (32.9%) than in control farms (5.9%). EcoRI ribotyping of clinical (n = 17) and farm (n = 414) isolates differentiated 51 ribotypes. L. monocytogenes ribotypes isolated from clinical cases and fecal samples were more frequent in environmental than in feed samples, indicating that infected animals may contribute to L. monocytogenes dispersal into the farm environment. Ribotype DUP-1038B was significantly (P < 0.05) associated with fecal samples compared with farm environment and animal feedstuff samples. Ribotype DUP-1045A was significantly (P < 0.05) associated with soil compared to feces and with control farms compared to case farms. Our data indicate that (i) the epidemiology and transmission of L. monocytogenes differ between small-ruminant and cattle farms; (ii) cattle contribute to amplification and dispersal of L. monocytogenes into the farm environment, (iii) the bovine farm ecosystem maintains a high prevalence of L. monocytogenes, including subtypes linked to human listeriosis cases and outbreaks, and (iv) L. monocytogenes subtypes may differ in their abilities to infect animals and to survive in farm environments.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                7 October 2013
                : 8
                : 10
                : e75969
                Affiliations
                [1 ]INRA, UMR1347 Agroécologie, Dijon, France
                [2 ]INRA, US-1106 InfoSol, BP20619, Orléans, France
                [3 ]Université de Bourgogne, UMR1347 Agroécologie, Dijon, France
                University of Illinois at Chicago College of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AL AS CJ PP AH. Performed the experiments: AL AS CJ PP AH. Analyzed the data: AL AS CJ PP AH. Contributed reagents/materials/analysis tools: AL AS CJ PP AH. Wrote the paper: AL AS CJ PP AH.

                Article
                PONE-D-13-22314
                10.1371/journal.pone.0075969
                3792134
                24116083
                f94538e6-4ce6-4c57-a36b-9ff3b5288406
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 May 2013
                : 18 August 2013
                Page count
                Pages: 9
                Funding
                Ph.D. grant of Aude Locatelli was funded by the French Agency for Environment and Energy Management (ADEME) and INRA (Environnement Agronomie Department). Part of this work was funded by the Conseil Régional de Bourgogne. This work was also funded by the ‘Agence Nationale de la Recherche’ (ANR) (programs 07 SEST project 018-01, 05 SEST project 009-01). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article