18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tetraspanin proteins promote multiple cancer stages

      Nature Reviews Cancer
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Integrin alpha 6 regulates glioblastoma stem cells.

          Cancer stem cells (CSCs) are a subpopulation of tumor cells suggested to be critical for tumor maintenance, metastasis, and therapeutic resistance. Prospective identification and targeting of CSCs are therefore priorities for the development of novel therapeutic paradigms. Although CSC enrichment has been achieved with cell surface proteins including CD133 (Prominin-1), the roles of current CSC markers in tumor maintenance remain unclear. We examined the glioblastoma stem cell (GSC) perivascular microenvironment in patient specimens to identify enrichment markers with a functional significance and identified integrin alpha6 as a candidate. Integrin alpha6 is coexpressed with conventional GSC markers and enriches for GSCs. Targeting integrin alpha6 in GSCs inhibits self-renewal, proliferation, and tumor formation capacity. Our results provide evidence that GSCs express high levels of integrin alpha6, which can serve not only as an enrichment marker but also as a promising antiglioblastoma therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of Akt signaling in vascular homeostasis and angiogenesis.

            Akt is a serine/threonine protein kinase that is activated by a number of growth factors and cytokines in a phosphatidylinositol-3 kinase-dependent manner. Although antiapoptotic activity of Akt is well known, it also regulates other aspects of cellular functions, including migration, glucose metabolism, and protein synthesis. In this review, Akt signaling in endothelial cells and its critical roles in the regulation of vascular homeostasis and angiogenesis will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling.

              Mutations in the genes encoding the Wnt receptor Frizzled-4 (FZD4), coreceptor LRP5, or the ligand Norrin disrupt retinal vascular development and cause ophthalmic diseases. Although Norrin is structurally unrelated to Wnts, it binds FZD4 and activates the canonical Wnt pathway. Here we show that the tetraspanin Tspan12 is expressed in the retinal vasculature, and loss of Tspan12 phenocopies defects seen in Fzd4, Lrp5, and Norrin mutant mice. In addition, Tspan12 genetically interacts with Norrin or Lrp5. Overexpressed TSPAN12 associates with the Norrin-receptor complex and significantly increases Norrin/beta-catenin but not Wnt/beta-catenin signaling, whereas Tspan12 siRNA abolishes transcriptional responses to Norrin but not Wnt3A in retinal endothelial cells. Signaling defects caused by Norrin or FZD4 mutations that are predicted to impair receptor multimerization are rescued by overexpression of TSPAN12. Our data indicate that Norrin multimers and TSPAN12 cooperatively promote multimerization of FZD4 and its associated proteins to elicit physiological levels of signaling.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Cancer
                Nat Rev Cancer
                Springer Nature America, Inc
                1474-175X
                1474-1768
                January 2014
                January 1 2014
                January 2014
                : 14
                : 1
                : 49-60
                Article
                10.1038/nrc3640
                f94c3a7a-61f4-4878-a7f8-9dd7d18ff41c
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article