21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Can snakes use yolk reserves to maximize body size at hatching?

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We experimentally miniaturized freshly laid eggs of the Chinese cobra Naja atra (Elapidae) by removing ∼10% and ∼20% of original yolk. We tested if yolk-reduced eggs would produce 1) normal-sized hatchlings with invariant yolk-free body mass (and thus invariant linear size) but dramatically reduced or even completely depleted residual yolk, 2) smaller hatchlings with normal-sized residual yolk but reduced yolk-free body mass, or 3) smaller hatchlings of which both yolk-free body mass and residual yolk are proportionally reduced. Yolk quantity affected hatchling linear size (both snout-vent length and tail length) and body mass. However, changes in yolk quantity did not affect incubation length or any hatchling trait examined after accounting for egg mass at laying (for control and sham-manipulated eggs) or after yolk removal (for manipulated eggs). Specifically, yolk-reduced eggs produced hatchlings of which all major components (carcass, residual yolk, and fat bodies) were scaled down proportionally. We show that snakes cannot use yolk reserves to maximize their body size at hatching. Furthermore, our data also suggest that the partitioning of yolk in embryonic snakes is species-specific.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size.

          To understand how selection shapes life-history traits, we need information on the manner in which offspring phenotypes influence fitness. Life-history allocation models typically assume that "bigger offspring are better", but field data paint a more complex picture: larger offspring size sometimes enhances fitness, and sometimes not. Additionally, higher survival and faster growth of larger offspring might be due to indirect maternal effects (e.g., mothers allocate hormones or nutrients differently to different-sized eggs), and not to offspring size per se. Alternative factors, such as seasonal timing of hatching, may be more important. We examined these issues using 419 eggs from captive jacky dragon lizards (Amphibolurus muricatus). The mothers were maintained under standardized conditions to minimize variance in thermal and nutritional history, and the eggs were incubated under controlled conditions to minimize variance in offspring phenotypes due to incubation temperature and moisture. We reduced the size of half the eggs (and, thus, the size of the resultant hatchlings) from each clutch by yolk extraction. The hatchlings were marked and released at a field site over a 3-month period, with regular recapture surveys to measure growth and survival under natural conditions. Growth rates and survival were strongly enhanced by early-season hatching, but were not affected by hatchling body size.
            • Record: found
            • Abstract: found
            • Article: not found

            THE EVOLUTION OF MATERNAL INVESTMENT IN LIZARDS: AN EXPERIMENTAL AND COMPARATIVE ANALYSIS OF EGG SIZE AND ITS EFFECTS ON OFFSPRING PERFORMANCE.

            I used comparative and experimental analysis of egg size in a Sceloporus lizard to examine a fundamental tenet of life-history theory: the presumed trade-offs among offspring number, offspring size, and performance traits related to offspring size that are likely to influence fitness. I analyzed latitudinal and elevational patterns of egg life-history characteristics among populations and experimentally manipulated egg size and hatchling size by removing yolk from the eggs to examine the causal bases of population differences in offspring traits. Mean clutch size among populations increased to the north (seven vs. 12 eggs/clutch, California vs. Washington), whereas egg size decreased (0.65 g vs. 0.40 g). The elevational patterns in southern California paralleled the latitudinal trends. Several offspring life-history traits that are correlated with egg size also varied geographically; these traits included incubation time, hatchling size, growth rate, and hatchling sprint performance. Hatchling viability of experimentally reduced eggs was remarkably high (~70%), even when up to 50% of the yolk was removed. The experimentally reduced eggs and hatchlings demonstrated the degree to which size influences each of the offspring life-history traits considered. Northern eggs hatched sooner, in part because of their small size. Though growth rate is allometrically related to size within each population (i.e., smaller hatchlings grow faster on a mass-specific basis), population differences in growth rate, as measured in the laboratory, are likely to reflect genetic differentiation in the underlying physiology of growth. Moreover, smaller juveniles, because of experimental reduction, had slower sprint speeds than larger juveniles. The slower sprint speed of hatchlings from Washington compared to hatchlings from California is thus largely due to the fact that eggs are smaller in the Washington population. These results provide a basis for interpreting the evolutionary divergence of the suite of traits involved in the evolution of maternal investment per offspring in lizards. For example, evolutionary divergence in some offspring traits functionally related to size (e.g., sprint speed) may be constrained, relative to traits that are determined by other aspects of development or physiology (e.g., growth). I also discuss issues relating to the evolution of maternal investment that could be tested in laboratory and natural populations using experimentally reduced offspring.
              • Record: found
              • Abstract: not found
              • Article: not found

              Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards

                Author and article information

                Contributors
                Role: Handling Editor
                Journal
                Curr Zool
                Curr Zool
                czoolo
                Current Zoology
                Oxford University Press
                1674-5507
                2396-9814
                December 2019
                27 December 2018
                27 December 2018
                : 65
                : 6
                : 627-631
                Affiliations
                [1 ] Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing, Jiangsu, China
                [2 ] Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou, Zhejiang, China
                Author notes
                Address correspondence to Xiang Ji. E-mail: jixiang@ 123456njnu.edu.cn .
                Article
                zoy098
                10.1093/cz/zoy098
                6911849
                31857809
                f9530ee6-5679-4732-a5ef-8e11afda74e6
                © The Author(s) (2018). Published by Oxford University Press on behalf of Editorial Office, Current Zoology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 29 October 2018
                : 12 December 2018
                Page count
                Pages: 5
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31272294
                Award ID: 31200283
                Funded by: Natural Science Foundation of Zhejiang Province 10.13039/501100004731
                Award ID: LY17C030003
                Categories
                Articles

                hatchling phenotype,naja atra,residual yolk,snake,yolk partitioning,yolk removal

                Comments

                Comment on this article

                Related Documents Log