29
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Call for Papers: Digital Platforms and Artificial Intelligence in Dementia

      Submit here by August 31, 2025

      About Dementia and Geriatric Cognitive Disorders: 2.2 Impact Factor I 4.7 CiteScore I 0.809 Scimago Journal & Country Rank (SJR)

      Call for Papers: Epidemiology of CKD and its Complications

      Submit here by August 31, 2024

      About Kidney and Blood Pressure Research: 2.3 Impact Factor I 4.8 CiteScore I 0.674 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Deep Insight into Ferroptosis in Renal Disease: Facts and Perspectives

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ferroptosis, a newly recognized form of programmed cell death, is distinguished by its reliance on reactive oxygen species and iron-mediated lipid peroxidation, setting it apart from established types like apoptosis, cell necrosis, and autophagy. Recent studies suggest its role in exacerbating or mitigating diseases by influencing metabolic and signaling pathways in conditions such as tumors and ischemic organ damage. Evidence also links ferroptosis to various kidney diseases, prompting a review of its research status and potential breakthroughs in understanding and treating these conditions.

          Summary

          In acute kidney disease (AKI), ferroptosis has been confirmed in animal kidneys after being induced by various factors such as renal ischemia-reperfusion and cisplatin, and glutathione peroxidase 4 (GPX4) is linked with AKI. Ferroptosis is associated with renal fibrosis in chronic kidney disease (CKD), TGF-β1 being crucial in this regard. In diabetic nephropathy (DN), high SLC7A11 and low nuclear receptor coactivator 4 (NCOA4) expressions are linked to disease progression. For polycystic kidney disease (PKD), ferroptosis promotes the disease by regulating ferroptosis in kidney tissue. Renal cell carcinoma (RCC) and lupus nephritis (LN) also have links to ferroptosis, with mtDNA and iron accumulation causing RCC and oxidative stress causing LN.

          Key Messages

          Ferroptosis is a newly identified form of programmed cell death that is associated with various diseases. It targets metabolic and signaling pathways and has been linked to kidney diseases such as AKI, CKD, PKD, DN, LN, and clear cell RCC. Understanding its role in these diseases could lead to breakthroughs in their pathogenesis, etiology, and treatment.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of ferroptotic cancer cell death by GPX4.

            Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death. Copyright © 2014 Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroptosis: mechanisms, biology and role in disease

              The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.

                Author and article information

                Journal
                Kidney Dis (Basel)
                Kidney Dis (Basel)
                KDD
                KDD
                Kidney Diseases
                S. Karger AG (Basel, Switzerland )
                2296-9381
                2296-9357
                8 March 2024
                June 2024
                : 10
                : 3
                : 224-236
                Affiliations
                [a ]School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
                [b ]School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
                [c ]Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
                Author notes
                Correspondence to: Lan Yuan, yuanlan@ 123456cdutcm.edu.cn , Shiyi Zhou, zhoushiyi@ 123456cdutcm.edu.cn

                Zhongyu Han and Yuanke Luo contributed equally to this work.

                Article
                538106
                10.1159/000538106
                11149998
                38835406
                f956e8d5-cb05-4578-ab35-dd854d049af0
                © 2024 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC) ( http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes requires written permission.

                History
                : 15 March 2023
                : 25 February 2024
                : 2024
                Page count
                Figures: 3, References: 89, Pages: 13
                Funding
                The work was supported by the Sichuan Provincial Science and Technology Program (2021YJ0255).
                Categories
                Review Article

                ferroptosis,metabolic pathway,kidney diseases
                ferroptosis, metabolic pathway, kidney diseases

                Comments

                Comment on this article

                Related Documents Log