+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Effects of Azido-3′-Deoxy-Thymidine on Luteinizing Hormone, Follicle-Stimulating Hormone and Prolactin Release by the Pituitary-Hypothalamus Complex

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Azido-3′-deoxy-thymidine (AZT) is a drug extensively used in the treatment of AIDS. AZT was incubated in vitro either with the pituitary-hypothalamus complex (PHc) or the intact pituitary (PI) of male rats. The PHc is comprised of the hypothalamus and the attached pituitary gland. After a preincubation period, the PHc or PI was incubated for 1 or 2 h with Krebs-Ringer bicarbonate buffer or either of two different concentrations of AZT (1 and 10 µ M). In the control incubations, the PHc released less prolactin (PRL) and more follicle-stimulating hormone (FSH) and luteinizing hormone (LH) than the PI, indicating that hypothalamic control of the pituitary was exerted in vitro, presumably by diffusion of releasing and inhibiting hormones from the neurohypophysis to the anterior lobe of the hypophysis. Both concentrations of AZT evoked a significant increase in release of PRL and a decreased release of LH and FSH from the PHc. In the case of LH, the higher concentration of AZT partially suppressed LH release within 1 h. The other effects were not dose-related and were observed after incubating the tissue with AZT for 2 h. However, incubation of the PI with AZT failed to alter anterior pituitary hormone release, illustrating that the site of action of AZT is in the hypothalamus. We hypothesize that AZT blocks DNA synthesis resulting in suppression of synthesis and consequent release of hypothalamic hormones that control release of pituitary hormones in vitro. The results raise the possibility that AZT may alter hypothalamic-pituitary function in vivo.

          Related collections

          Author and article information

          S. Karger AG
          23 January 1998
          : 4
          : 3
          : 128-133
          Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La., USA
          97331 Neuroimmunomodulation 1997;4:128–133
          © 1997 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 6
          Original Paper


          Comment on this article