24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

            Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              25th anniversary article: MXenes: a new family of two-dimensional materials.

              Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2 AlC, Ti3 AlC2 , and Ta4 AlC3 . MXenes -combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as "conductive clays". This article reviews progress-both -experimental and theoretical-on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.
                Bookmark

                Author and article information

                Journal
                Small
                Small
                Wiley
                16136810
                November 2018
                November 2018
                October 07 2018
                : 14
                : 45
                : 1802479
                Affiliations
                [1 ]Beijing Key Laboratory of Advanced Functional Polymer Composites; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
                [2 ]State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
                [3 ]Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016 China
                Article
                10.1002/smll.201802479
                30295015
                f9719785-1002-4dfc-86de-4e761ae19c0d
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article