17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multivariate Optimization of Tenax TA-Thermal Extraction for Determining Gaseous Phase Organophosphate Esters in Air Samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Suitable conditions for thermal extraction of semi-volatile organic compounds have largely been arrived at by univariate optimization or based on the recommendations provided by the manufacturers of the extraction equipment. Herein, we demonstrated the multivariate optimization of Tenax TA–thermal extraction for determining organophosphate esters in the gas phase fraction of air samples. Screening and refining experiments were performed using the eighth fraction factorial and Box-Behnken designs, respectively, and satisfactory models were obtained. Subsequently, the process was optimized by Derringer’s desirability function and the global desirability was 0.7299. Following optimization, the analytes were desorbed at 290 °C for 10 minutes at a helium flow of 95 mL min −1, with the transfer line set at 290 °C. The analytes were then cryofocused at 20 °C and then cryodesorbed into the chromatographic column at 295 °C for 6 minutes. Method validation exhibited high linearity coefficients (>0.99), good precision (CV < 14%) and low detection limits (0.1–0.5 ng m −3). The method was tested by pumping 0.024 m 3 of real indoor environment air through Tenax TA sorbent tubes. Furthermore, with multivariate optimization, analysis time and other resources were significantly reduced, and information about experimental factor interaction effects was investigated, as compared to the univariate optimization and other traditional methods.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis.

          Since the ban on some brominated flame retardants (BFRs), phosphorus flame retardants (PFRs), which were responsible for 20% of the flame retardant (FR) consumption in 2006 in Europe, are often proposed as alternatives for BFRs. PFRs can be divided in three main groups, inorganic, organic and halogen containing PFRs. Most of the PFRs have a mechanism of action in the solid phase of burning materials (char formation), but some may also be active in the gas phase. Some PFRs are reactive FRs, which means they are chemically bound to a polymer, whereas others are additive and mixed into the polymer. The focus of this report is limited to the PFRs mentioned in the literature as potential substitutes for BFRs. The physico-chemical properties, applications and production volumes of PFRs are given. Non-halogenated PFRs are often used as plasticisers as well. Limited information is available on the occurrence of PFRs in the environment. For triphenyl phosphate (TPhP), tricresylphosphate (TCP), tris(2-chloroethyl)phosphate (TCEP), tris(chloropropyl)phosphate (TCPP), tris(1,3-dichloro-2-propyl)phosphate (TDCPP), and tetrekis(2-chlorethyl)dichloroisopentyldiphosphate (V6) a number of studies have been performed on their occurrence in air, water and sediment, but limited data were found on their occurrence in biota. Concentrations found for these PFRs in air were up to 47 μg m(-3), in sediment levels up to 24 mg kg(-1) were found, and in surface water concentrations up to 379 ng L(-1). In all these matrices TCPP was dominant. Concentrations found in dust were up to 67 mg kg(-1), with TDCPP being the dominant PFR. PFR concentrations reported were often higher than polybrominated diphenylether (PBDE) concentrations, and the human exposure due to PFR concentrations in indoor air appears to be higher than exposure due to PBDE concentrations in indoor air. Only the Cl-containing PFRs are carcinogenic. Other negative human health effects were found for Cl-containing PFRs as well as for TCP, which suggest that those PFRs would not be suitable alternatives for BFRs. TPhP, diphenylcresylphosphate (DCP) and TCP would not be suitable alternatives either, because they are considered to be toxic to (aquatic) organisms. Diethylphosphinic acid is, just like TCEP, considered to be very persistent. From an environmental perspective, resorcinol-bis(diphenylphosphate) (RDP), bisphenol-A diphenyl phosphate (BADP) and melamine polyphosphate, may be suitable good substitutes for BFRs. Information on PFR analysis in air, water and sediment is limited to TCEP, TCPP, TPhP, TCP and some other organophosphate esters. For air sampling passive samplers have been used as well as solid phase extraction (SPE) membranes, SPE cartridges, and solid phase micro-extraction (SPME). For extraction of PFRs from water SPE is recommended, because this method gives good recoveries (67-105%) and acceptable relative standard deviations (RSDs) (<20%), and offers the option of on-line coupling with a detection system. For the extraction of PFRs from sediment microwave-assisted extraction (MAE) is recommended. The recoveries (78-105%) and RSDs (3-8%) are good and the method is faster and requires less solvent compared to other methods. For the final instrumental analysis of PFRs, gas chromatography-flame photometric detection (GC-FPD), GC-nitrogen-phosphorus detection (NPD), GC-atomic emission detection (AED), GC-mass spectrometry (MS) as well as liquid chromatography (LC)-MS/MS and GC-Inductively-coupled plasma-MS (ICP-MS) are used. GC-ICP-MS is a promising method, because it provides much less complex chromatograms while offering the same recoveries and limits of detection (LOD) (instrumental LOD is 5-10 ng mL(-1)) compared to GC-NPD and GC-MS, which are frequently used methods for PFR analysis. GC-MS offers a higher selectivity than GC-NPD and the possibility of using isotopically labeled compounds for quantification. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Box-Behnken design: an alternative for the optimization of analytical methods.

            The present paper describes fundamentals, advantages and limitations of the Box-Behnken design (BBD) for the optimization of analytical methods. It establishes also a comparison between this design and composite central, three-level full factorial and Doehlert designs. A detailed study on factors and responses involved during the optimization of analytical systems is also presented. Functions developed for calculation of multiple responses are discussed, including the desirability function, which was proposed by Derringer and Suich in 1980. Concept and evaluation of robustness of analytical methods are also discussed. Finally, descriptions of applications of this technique for optimization of analytical methods are presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Simultaneous Optimization of Several Response Variables

                Bookmark

                Author and article information

                Contributors
                qhzhang@rcees.ac.cn
                969676617@qq.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 March 2019
                4 March 2019
                2019
                : 9
                : 3330
                Affiliations
                [1 ]ISNI 0000 0004 0467 2189, GRID grid.419052.b, State Key Laboratory of Environmental Chemistry and Ecotoxicology, , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ; Beijing, 100085 China
                [2 ]ISNI 0000 0004 1797 8419, GRID grid.410726.6, University of Chinese Academy of Sciences, ; Beijing, 100049 China
                [3 ]ISNI 0000 0001 0709 0000, GRID grid.411854.d, Institute of Environment and Health, , Jianghan University, ; Wuhan, 430056 China
                [4 ]GRID grid.464443.5, Shenzhen Center for Disease Control and Prevention, ; Shenzhen, 518055 China
                Article
                40119
                10.1038/s41598-019-40119-2
                6399288
                30833617
                f972281a-3521-45bf-8e1a-e76d0c324a2e
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 October 2018
                : 7 February 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: (91743206, 41676183 and 21621064)
                Award ID: (91743206, 41676183 and 21621064)
                Award ID: (91743206, 41676183 and 21621064)
                Award Recipient :
                Funded by: National Basic Research Program of China (2015CB453101) Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14010100) Sanming Project of Medicine in Shenzhen (SZSM201811070) CAS-TWAS President&amp;#x2019;s Fellowship for International PhD students
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article