49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enrichment of the Lung Microbiome with Gut Bacteria in Sepsis and the Acute Respiratory Distress Syndrome

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecologic analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria ( Bacteroides spp.) were common and abundant, undetected by culture, and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

          The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype.

            Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach. By evaluating both upper airway and acellular bronchoalveolar lavage samples from 49 subjects from three cohorts without known pulmonary disease, we observed that pneumotypeSPT was associated with a distinct metabolic profile, enhanced expression of inflammatory cytokines, a pro-inflammatory phenotype characterized by elevated Th-17 lymphocytes and, conversely, a blunted alveolar macrophage TLR4 response. The cellular immune responses observed in the lower airways of humans with pneumotypeSPT indicate a role for the aspiration-derived microbiota in regulating the basal inflammatory status at the pulmonary mucosal surface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical risks for development of the acute respiratory distress syndrome.

              To further understanding of the epidemiology of acute respiratory distress syndrome (ARDS), we prospectively identified 695 patients admitted to our intensive care units from 1983 through 1985 meeting criteria for seven clinical risks, and followed them for development of ARDS and eventual outcome. ARDS occurred in 179 of the 695 patients (26%). The highest incidence of ARDS occurred in patients with sepsis syndrome (75 of 176; 43%) and those with multiple emergency transfusions (> or = 15 units in 24 h) (46 of 115; 40%). Of patients with multiple trauma, 69 of 271 (25%) developed ARDS. If any two clinical risks for trauma were present, the incidence of ARDS was 23 of 57, or 40%. During the study period, we identified 48 patients with ARDS who did not have one of the defined clinical risks, yielding a sensitivity of 79% (179 of 227). Secondary factors associated with increased risk for ARDS in clinical risk subgroups include an elevated Acute Physiologic and Chronic Health Evaluation II (APACHE II) score in patients with sepsis and increased APACHE II and Injury Severity Scores (ISS) in trauma victims. Mortality was threefold higher when ARDS was present (62%) than among patients with clinical risks who did not develop ARDS (19%; p < 0.05). The difference in mortality if ARDS developed was particularly striking in patients with trauma (56% versus 13%), but less in those with sepsis (69% versus 49%). The mortality data should be interpreted with caution, since the fatality rate in ARDS patients appears to have decreased in our institution from the time that these data were collected.(ABSTRACT TRUNCATED AT 250 WORDS)
                Bookmark

                Author and article information

                Journal
                101674869
                44774
                Nat Microbiol
                Nat Microbiol
                Nature microbiology
                2058-5276
                19 October 2016
                18 July 2016
                18 July 2016
                18 January 2017
                : 1
                : 10
                : 16113
                Affiliations
                [1 ]Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
                [2 ]Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
                Author notes
                Corresponding Author Information: Robert P. Dickson, MD, Pulmonary & Critical Care Medicine, 6301 MSRB III/SPC 5642, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5642 USA, rodickso@ 123456med.umich.edu , (734)936-5010 (administrator), (734)764-2655 (fax)
                [3]

                Co-senior authors

                Article
                PMC5076472 PMC5076472 5076472 nihpa824095
                10.1038/nmicrobiol.2016.113
                5076472
                27670109
                f97d2e67-7f44-4a92-b89b-8e51a70d84ec
                History
                Categories
                Article

                Comments

                Comment on this article