Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Mercury (Hg) stored in vegetation and soils is known to be released to the atmosphere during wildfires, increasing atmospheric stores and altering terrestrial budgets. Increased erosion and transport of sediments is well-documented in burned watersheds, both immediately post-fire and as the watershed recovers; however, understanding post-fire mobilization of soil Hg within burned watersheds remains elusive. The goal of the current study is to better understand the impact of wildfire on soil-bound Hg during the immediate post-fire period as well as during recovery, in order to assess the potential for sediment-driven transport to and within surface waters in burned watersheds. Soils were collected from three southern California watersheds of similar vegetation and soil characteristics that experienced wildfire. Sampling in one of these watersheds was extended for several seasons (1.5 years) in order to investigate temporal changes in soil Hg concentrations. Laboratory analysis included bulk soil total Hg concentrations and total organic carbon of burned and unburned samples. Soils were also fractionated into a subset of grain sizes with analysis of Hg on each fraction. Low Hg concentrations were observed in surface soils immediately post-fire. Accumulation of Hg coincident with moderate vegetative recovery was observed in the burned surface soils 1 year following the fire, and mobilization was also noted during the second winter (rainy) season. Hg concentrations were highest in the fine-grained fraction of unburned soils; however, in the burned soils, the distribution of soil-bound Hg was less influenced by grain size. The accelerated accumulation of Hg observed in the burned soils, along with the elevated risk of erosion, could result in increased delivery of organic- or particulate-bound Hg to surface waters in post-fire systems.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: not found

      Warming and earlier spring increase western U.S. forest wildfire activity.

      Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        The effect of fire on soil organic matter--a review.

        The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Interactions between mercury and dissolved organic matter--a review.

          Dissolved organic matter (DOM) interacts very strongly with mercury, affecting its speciation, solubility, mobility, and toxicity in the aquatic environment. Strong binding of mercury by DOM is attributed to coordination of mercury at reduced sulfur sites within the organic matter, which are present at concentrations much higher than mercury concentrations found in most natural waters. The ability of organic matter to enhance the dissolution and inhibit the precipitation of mercuric sulfide, a highly insoluble solid, suggests that DOM competes with sulfide for mercury binding. This is confirmed by very high conditional stability constants for mercury-organic sulfur (RSHg+) complexes (10(25)-10(32)) recently reported in literature. DOM appears to play a key role in the photochemical reduction of ionic mercury to elemental mercury and subsequent reoxidation of elemental mercury to ionic mercury, thus affecting volatilization loss and bioavailability of mercury to organisms. DOM affects the production and bioaccumulation of methylmercury, the most bioaccumulative mercury species in fish.
            Bookmark

            Author and article information

            Affiliations
            Department of Civil and Environmental Engineering, UCLA, 5731F Boelter Hall, Los Angeles, CA 90095-1593 USA
            Contributors
            megaburke@ucla.edu
            +1-310-7944239 , thogue@seas.ucla.edu
            Journal
            Water Air Soil Pollut
            Water, Air, and Soil Pollution
            Springer Netherlands (Dordrecht )
            0049-6979
            1573-2932
            16 March 2010
            16 March 2010
            October 2010
            : 212
            : 1-4
            : 369-385
            2941627
            20936165
            351
            10.1007/s11270-010-0351-y
            © The Author(s) 2010
            Categories
            Article
            Custom metadata
            © Springer Science+Business Media B.V. 2010

            General environmental science

            mercury, chaparral, soil, california, semi-arid, fire

            Comments

            Comment on this article