15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Expression of glucokinase in cultured human muscle cells confers insulin-independent and glucose concentration-dependent increases in glucose disposal and storage.

      Diabetes
      Adenoviridae, Animals, Biological Transport, Cells, Cultured, DNA, Complementary, Deoxyglucose, metabolism, Gene Expression, Genetic Vectors, Glucokinase, biosynthesis, genetics, Glucose, Glucosephosphates, Glycogen, Glycogen Synthase, Humans, Insulin, pharmacology, Kinetics, Liver, enzymology, Mice, Mice, Transgenic, Muscle, Skeletal, drug effects, Phosphorylases, Rats, Recombinant Proteins

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin resistance, as is found in skeletal muscle of individuals with obesity and NIDDM, appears to involve a reduced capacity of the hormone to stimulate glucose uptake and/or phosphorylation. The glucose phosphorylation step, as catalyzed by hexokinase II, has been described as rate limiting for glucose disposal in muscle, but overexpression of this enzyme under control of a muscle-specific promoter in transgenic mice has had limited metabolic impact. In the current study, we investigated in a cultured muscle model whether expression of glucokinase, which in contrast to hexokinase II is not inhibited by glucose-6-phosphate (G-6-P), would have a pronounced metabolic impact. We used a recombinant adenovirus containing the cDNA-encoding rat liver glucokinase (AdCMV-GKL) to increase the glucose phosphorylating activity in cultured human muscle cells by fourfold. G-6-P levels increased in AdCMV-GKL-treated cells in a glucose concentration-dependent manner over the range of 1-30 mmol/l, whereas the much smaller increases in G-6-P in control cells were maximal at glucose concentrations <5 mmol/l. Further, cells expressing glucokinase accumulated 17 times more 2-deoxyglucose-6-phosphate than control cells. In AdCMV-GKL-treated cells, the time-dependent rise in G-6-P correlated with an increase in the activity ratio of glycogen synthase. AdCMV-GKL-treated cells also exhibited a 2.5- to 3-fold increase in glycogen content and a four- to fivefold increase in glycolytic flux, proportional to the increase in glucose phosphorylating capacity. All of these observations were made in the absence of insulin. Thus we concluded that expression of glucokinase in cultured human muscle cells results in proportional increases in insulin-independent glucose disposal, and that muscle glucose storage and utilization becomes controlled in a glucose concentration-dependent manner in AdCMV-GKL-treated cells. These results encourage testing whether delivery of glucokinase to muscle in vivo has an impact on glycemic control, which could be a method for circumventing the failure of insulin to stimulate glucose uptake and/or phosphorylation in muscle normally in insulin-resistant subjects.

          Related collections

          Author and article information

          Comments

          Comment on this article