96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes

      , , ,
      Aquaculture
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Probiotic bacteria as biological control agents in aquaculture.

          There is an urgent need in aquaculture to develop microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and trade and since the development of antibiotic resistance has become a matter of growing concern. One of the alternatives to antimicrobials in disease control could be the use of probiotic bacteria as microbial control agents. This review describes the state of the art of probiotic research in the culture of fish, crustaceans, mollusks, and live food, with an evaluation of the results obtained so far. A new definition of probiotics, also applicable to aquatic environments, is proposed, and a detailed description is given of their possible modes of action, i.e., production of compounds that are inhibitory toward pathogens, competition with harmful microorganisms for nutrients and energy, competition with deleterious species for adhesion sites, enhancement of the immune response of the animal, improvement of water quality, and interaction with phytoplankton. A rationale is proposed for the multistep and multidisciplinary process required for the development of effective and safe probiotics for commercial application in aquaculture. Finally, directions for further research are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of bacterial spore formers as probiotics.

            The field of probiosis has emerged as a new science with applications in farming and aqaculture as alternatives to antibiotics as well as prophylactics in humans. Probiotics are being developed commercially for both human use, primarily as novel foods or dietary supplements, and in animal feeds for the prevention of gastrointestinal infections, with extensive use in the poultry and aquaculture industries. The impending ban of antibiotics in animal feed, the current concern over the spread of antibiotic resistance genes, the failure to identify new antibiotics and the inherent problems with developing new vaccines make a compelling case for developing alternative prophylactics. Among the large number of probiotic products in use today are bacterial spore formers, mostly of the genus Bacillus. Used primarily in their spore form, these products have been shown to prevent gastrointestinal disorders and the diversity of species used and their applications are astonishing. Understanding the nature of this probiotic effect is complicated, not only because of the complexities of understanding the microbial interactions that occur within the gastrointestinal tract (GIT), but also because Bacillus species are considered allochthonous microorganisms. This review summarizes the commercial applications of Bacillus probiotics. A case will be made that many Bacillus species should not be considered allochthonous microorganisms but, instead, ones that have a bimodal life cycle of growth and sporulation in the environment as well as within the GIT. Specific mechanisms for how Bacillus species can inhibit gastrointestinal infections will be covered, including immunomodulation and the synthesis of antimicrobials. Finally, the safety and licensing issues that affect the use of Bacillus species for commercial development will be summarized, together with evidence showing the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case by basis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiology of resistance to antibiotics. Links between animals and humans.

              An inevitable side effect of the use of antibiotics is the emergence and dissemination of resistant bacteria. Most retrospective and prospective studies show that after the introduction of an antibiotic not only the level of resistance of pathogenic bacteria, but also of commensal bacteria increases. Commensal bacteria constitute a reservior of resistance genes for (potentially) pathogenic bacteria. Their level of resistance is considered to be a good indicator for selection pressure by antibiotic use and for resistance problems to be expected in pathogens. Resistant commensal bacteria of food animals might contaminate, like zoonotic bacteria, meat (products) and so reach the intestinal tract of humans. Monitoring the prevalence of resistance in indicator bacteria such as faecal Escherichia coli and enterococci in different populations, animals, patients and healthy humans, makes it feasible to compare the prevalence of resistance and to detect transfer of resistant bacteria or resistance genes from animals to humans and vice versa. Only in countries that use or used avoparcin (a glycopeptide antibiotic, like vancomycin) as antimicrobial growth promoter (AMGP), is vancomycin resistance common in intestinal enterococci, not only in exposed animals, but also in the human population outside hospitals. Resistance genes against antibiotics, that are or have only been used in animals, i.e. nourseothricin, apramycin etc. were found soon after their introduction, not only in animal bacteria but also in the commensal flora of humans, in zoonotic pathogens like salmonellae, but also in strictly human pathogens, like shigellae. This makes it clear that not only clonal spread of resistant strains occurs, but also transfer of resistance genes between human and animal bacteria. Moreover, since the EU ban of avoparcin, a significant decrease has been observed in several European countries in the prevalence of vancomycin resistant enterococci in meat (products), in faecal samples of food animals and healthy humans, which underlines the role of antimicrobial usage in food animals in the selection of bacterial resistance and the transport of these resistances via the food chain to humans. To safeguard public health, the selection and dissemination of resistant bacteria from animals should be controlled. This can only be achieved by reducing the amounts of antibiotics used in animals. Discontinuing the practice of routinely adding AMGP to animal feeds would reduce the amounts of antibiotics used for animals in the EU by a minimum of 30% and in some member states even by 50%.
                Bookmark

                Author and article information

                Journal
                Aquaculture
                Aquaculture
                Elsevier BV
                00448486
                January 2008
                January 2008
                : 274
                : 1
                : 1-14
                Article
                10.1016/j.aquaculture.2007.11.019
                f9a1f4c7-7a7b-4bdb-848b-a4b096ed0fc3
                © 2008

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article