51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The genetics of human ageing

      , ,
      Nature Reviews Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The past two centuries have witnessed an unprecedented rise in human life expectancy. Sustaining longer lives with reduced periods of disability will require an understanding of the underlying mechanisms of ageing, and genetics is a powerful tool for identifying these mechanisms. Large-scale genome-wide association studies have recently identified many loci that influence key human ageing traits, including lifespan. Multi-trait loci have been linked with several age-related diseases, suggesting shared ageing influences. Mutations that drive accelerated ageing in prototypical progeria syndromes in humans point to an important role for genome maintenance and stability. Together, these different strands of genetic research are highlighting pathways for the discovery of anti-ageing interventions that may be applicable in humans.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Benefits and limitations of genome-wide association studies

          Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study

            Background Cellular senescence is a key mechanism that drives age-related diseases, but has yet to be targeted therapeutically in humans. Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal cellular senescence-associated disease. Selectively ablating senescent cells using dasatinib plus quercetin (DQ) alleviates IPF-related dysfunction in bleomycin-administered mice. Methods A two-center, open-label study of intermittent DQ (D:100 mg/day, Q:1250 mg/day, three-days/week over three-weeks) was conducted in participants with IPF (n = 14) to evaluate feasibility of implementing a senolytic intervention. The primary endpoints were retention rates and completion rates for planned clinical assessments. Secondary endpoints were safety and change in functional and reported health measures. Associations with the senescence-associated secretory phenotype (SASP) were explored. Findings Fourteen patients with stable IPF were recruited. The retention rate was 100% with no DQ discontinuation; planned clinical assessments were complete in 13/14 participants. One serious adverse event was reported. Non-serious events were primarily mild-moderate, with respiratory symptoms (n = 16 total events), skin irritation/bruising (n = 14), and gastrointestinal discomfort (n = 12) being most frequent. Physical function evaluated as 6-min walk distance, 4-m gait speed, and chair-stands time was significantly and clinically-meaningfully improved (p < .05). Pulmonary function, clinical chemistries, frailty index (FI-LAB), and reported health were unchanged. DQ effects on circulat.ing SASP factors were inconclusive, but correlations were observed between change in function and change in SASP-related matrix-remodeling proteins, microRNAs, and pro-inflammatory cytokines (23/48 markers r ≥ 0.50). Interpretation Our first-in-humans open-label pilot supports study feasibility and provides initial evidence that senolytics may alleviate physical dysfunction in IPF, warranting evaluation of DQ in larger randomized controlled trials for senescence-related diseases. ClinicalTrials.gov identifier: NCT02874989 (posted 2016–2018).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation.

              Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Science and Business Media LLC
                1471-0056
                1471-0064
                November 5 2019
                Article
                10.1038/s41576-019-0183-6
                31690828
                f9a86b23-b335-47a6-bea8-1a15a9e300f4
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article