94
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0

      product-review

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability.

          Implementation

          To keep DOVIS up-to-date, we upgraded the software's docking engine to the more accurate AutoDock 4.0 code. We developed a new parallelization scheme to improve runtime efficiency and modified the AutoDock code to reduce excessive file operations during large-scale virtual screening jobs. We also implemented an algorithm to output docked ligands in an industry standard format, sd-file format, which can be easily interfaced with other modeling programs. Finally, we constructed a wrapper-script interface to enable automatic rescoring of docked ligands by arbitrarily selected third-party scoring programs.

          Conclusion

          The significance of the new DOVIS 2.0 software compared with the previous version lies in its improved performance and usability. The new version makes the computation highly efficient by automating load balancing, significantly reducing excessive file operations by more than 95%, providing outputs that conform to industry standard sd-file format, and providing a general wrapper-script interface for rescoring of docked ligands. The new DOVIS 2.0 package is freely available to the public under the GNU General Public License.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          A semiempirical free energy force field with charge-based desolvation.

          The authors describe the development and testing of a semiempirical free energy force field for use in AutoDock4 and similar grid-based docking methods. The force field is based on a comprehensive thermodynamic model that allows incorporation of intramolecular energies into the predicted free energy of binding. It also incorporates a charge-based method for evaluation of desolvation designed to use a typical set of atom types. The method has been calibrated on a set of 188 diverse protein-ligand complexes of known structure and binding energy, and tested on a set of 100 complexes of ligands with retroviral proteases. The force field shows improvement in redocking simulations over the previous AutoDock3 force field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The RCSB PDB information portal for structural genomics

            The RCSB Protein Data Bank (PDB) offers online tools, summary reports and target information related to the worldwide structural genomics initiatives from its portal at . There are currently three components to this site: Structural Genomics Initiatives contains information and links on each structural genomics site, including progress reports, target lists, target status, targets in the PDB and level of sequence redundancy; Targets provides combined target information, protocols and other data associated with protein structure determination; and Structures offers an assessment of the progress of structural genomics based on the functional coverage of the human genome by PDB structures, structural genomics targets and homology models. Functional coverage can be examined according to enzyme classification, gene ontology (biological process, cell component and molecular function) and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ensemble-Based Virtual Screening Reveals Potential Novel Antiviral Compounds for Avian Influenza Neuraminidase

              Avian influenza virus subtype H5N1 is a potential pandemic threat with human-adapted strains resistant to antiviral drugs. Although virtual screening (VS) against a crystal or relaxed receptor structure is an established method to identify potential inhibitors, the more dynamic changes within binding sites are neglected. To accommodate full receptor flexibility, we use AutoDock4 to screen the NCI diversity set against representative receptor ensembles extracted from explicitly solvated molecular dynamics simulations of the neuraminidase system. The top hits are redocked to the entire nonredundant receptor ensemble and rescored using the relaxed complex scheme (RCS). Of the 27 top hits reported, half ranked very poorly if only crystal structures are used. These compounds target the catalytic cavity as well as the newly identified 150- and 430-cavities, which exhibit dynamic properties in electrostatic surface and geometric shape. This ensemble-based VS and RCS approach may offer improvement over existing strategies for structure-based drug discovery.
                Bookmark

                Author and article information

                Journal
                Chem Cent J
                Chemistry Central Journal
                BioMed Central
                1752-153X
                2008
                8 September 2008
                : 2
                : 18
                Affiliations
                [1 ]Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
                Article
                1752-153X-2-18
                10.1186/1752-153X-2-18
                2542995
                18778471
                f9b66bc3-f9b2-42c0-87ea-1ad4b2e6d53f
                Copyright © 2008 Jiang et al
                History
                : 3 July 2008
                : 8 September 2008
                Categories
                Software

                Chemistry
                Chemistry

                Comments

                Comment on this article