97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TLR2 promotes NLRP3 inflammasome activation via an early MyD88-IRAK1-dependent pathway that provides a priming signal (signal 1) necessary for activation of the inflammasome by a second potassium-depleting signal (signal 2). Here we show that TLR3 binding to dsRNA promotes post-translational inflammasome activation through intermediate and late TRIF/RIPK1/FADD-dependent pathways. Both pathways require the scaffolding but not the catalytic function of caspase-8 or RIPK1. Only the late pathway requires kinase competent RIPK3 and MLKL function. Mechanistically, FADD/caspase-8 scaffolding function provides a post-translational signal 1 in the intermediate pathway, whereas in the late pathway it helps the oligomerization of RIPK3, which together with MLKL provides both signal 1 and 2 for inflammasome assembly. Cytoplasmic dsRNA activates NLRP3 independent of TRIF, RIPK1, RIPK3 or mitochondrial DRP1, but requires FADD/caspase-8 in wildtype macrophages to remove RIPK3 inhibition. Our study provides a comprehensive analysis of pathways that lead to NLRP3 inflammasome activation in response to dsRNA.

          Abstract

          Inflammasome activation requires a complex and incompletely understood network of signalling events. Here the authors characterize step-by-step contributions of TLR3, caspase-8, RIPK3 and MLKL to the activation of NLRP3 inflammasome in response to double-stranded RNA.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice.

          Mitochondrial morphology is dynamically controlled by a balance between fusion and fission. The physiological importance of mitochondrial fission in vertebrates is less clearly defined than that of mitochondrial fusion. Here we show that mice lacking the mitochondrial fission GTPase Drp1 have developmental abnormalities, particularly in the forebrain, and die after embryonic day 12.5. Neural cell-specific (NS) Drp1(-/-) mice die shortly after birth as a result of brain hypoplasia with apoptosis. Primary culture of NS-Drp1(-/-) mouse forebrain showed a decreased number of neurites and defective synapse formation, thought to be due to aggregated mitochondria that failed to distribute properly within the cell processes. These defects were reflected by abnormal forebrain development and highlight the importance of Drp1-dependent mitochondrial fission within highly polarized cells such as neurons. Moreover, Drp1(-/-) murine embryonic fibroblasts and embryonic stem cells revealed that Drp1 is required for a normal rate of cytochrome c release and caspase activation during apoptosis, although mitochondrial outer membrane permeabilization, as examined by the release of Smac/Diablo and Tim8a, may occur independently of Drp1 activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unresponsiveness of MyD88-deficient mice to endotoxin.

            MyD88 is a general adaptor protein that plays an important role in the Toll/IL-1 receptor family signalings. Recently, Toll-like receptors 2 and 4 (TLR2 and TLR4) have been suggested to be the signaling receptors for lipopolysaccharide (LPS). In this study, we demonstrate that MyD88 knockout mice lack the ability to respond to LPS as measured by shock response, B cell proliferative response, and secretion of cytokines by macrophages and embryonic fibroblasts. However, activation of neither NF-kappaB nor the mitogen-activated protein (MAP) kinase family is abolished in MyD88 knockout mice. These findings demonstrate that signaling via MyD88 is essential for LPS response, but the inability of MyD88 knockout mice to induce LPS-dependent gene expression cannot simply be attributed to lack of the activation of MAP kinases and NF-kappaB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL

              RIPK3 and its substrate MLKL are essential for necroptosis, a lytic cell death proposed to cause inflammation via the release of intracellular molecules. Whether and how RIPK3 might drive inflammation in a manner independent of MLKL and cell lysis remains unclear. Here we show that following LPS treatment, or LPS-induced necroptosis, the TLR adaptor protein TRIF and inhibitor of apoptosis proteins (IAPs: X-linked IAP, cellular IAP1 and IAP2) regulate RIPK3 and MLKL ubiquitylation. Hence, when IAPs are absent, LPS triggers RIPK3 to activate caspase-8, promoting apoptosis and NLRP3–caspase-1 activation, independent of RIPK3 kinase activity and MLKL. In contrast, in the absence of both IAPs and caspase-8, RIPK3 kinase activity and MLKL are essential for TLR-induced NLRP3 activation. Consistent with in vitro experiments, interleukin-1 (IL-1)-dependent autoantibody-mediated arthritis is exacerbated in mice lacking IAPs, and is reduced by deletion of RIPK3, but not MLKL. Therefore RIPK3 can promote NLRP3 inflammasome and IL-1β inflammatory responses independent of MLKL and necroptotic cell death.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                24 June 2015
                2015
                : 6
                : 7515
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania 19107, USA
                [2 ]Department of Physiology and Cellular Biophysics, Columbia University Medical Center , New York, New York 10032, USA
                [3 ]Deptartment of Immunology, St Jude Children's Research Hospital , Memphis, Tennessee 38105, USA
                [4 ]Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine , Atlanta, Georgia 30322, USA
                [5 ]Department of Immunology, University of Washington , Seattle Washington 98109-8059 USA
                [6 ]Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University , Matsumoto, Nagano 390-8621, Japan
                [7 ]Division of Infectious Diseases and Immunology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, USA
                [8 ]Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania 19107, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                ncomms8515
                10.1038/ncomms8515
                4480782
                26104484
                f9c763a2-e9b2-4092-9d05-be778910e7ff
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 December 2014
                : 15 May 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article