79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H 2O 2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H 2O 2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation ( p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Red cell membrane: past, present, and future.

          As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biophysical aspects of blood flow in the microvasculature.

            The main function of the microvasculature is transport of materials. Water and solutes are carried by blood through the microvessels and exchanged, through vessel walls, with the surrounding tissues. This transport function is highly dependent on the architecture of the microvasculature and on the biophysical behavior of blood flowing through it. For example, the hydrodynamic resistance of a microvascular network, which determines the overall blood flow for a given perfusion pressure, depends on the number, size and arrangement of microvessels, the passive and active mechanisms governing their diameters, and on the apparent viscosity of blood flowing in them. Suspended elements in blood, especially red blood cells, strongly influence the apparent viscosity, which varies with several factors, including vessel diameter, hematocrit and blood flow velocity. The distribution of blood flows and red cell fluxes within a network, which influences the spatial pattern of mass transport, is determined by the mechanics of red cell motion in individual diverging bifurcations. Here, our current understanding of the biophysical processes governing blood flow in the microvasculature is reviewed, and some directions for future research are indicated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Improved measurements of the erythrocyte geometry.

                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                05 December 2013
                28 February 2014
                2014
                : 5
                : 84
                Affiliations
                Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging Baltimore, MD, USA
                Author notes

                Edited by: Lars Kaestner, Saarland University, Germany

                Reviewed by: Anna Bogdanova, University of Zurich, Switzerland; Giel Bosman, Radboud University Nijmegen Medical Centre, Netherlands

                *Correspondence: Joseph M. Rifkind, Molecular Dynamics Section, Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Boulvard, Baltimore, MD 21224, USA e-mail: rifkindj@ 123456mail.nih.gov

                This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00084
                3937982
                24616707
                f9d446db-fd37-4662-9954-4f5826b7a61e
                Copyright © 2014 Mohanty, Nagababu and Rifkind.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 November 2013
                : 12 February 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 68, Pages: 6, Words: 5851
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                red blood cells,oxidative stress,deformability,heme degradation,cellular aging

                Comments

                Comment on this article