37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CXCL16 positively correlated with M2-macrophage infiltration, enhanced angiogenesis, and poor prognosis in thyroid cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although various chemokines have pro-tumorigenic actions in cancers, the effects of CXCL16 remain controversial. The aim of this study was to investigate the molecular characteristics of CXCL16-expressing papillary thyroid cancers (PTCs). CXCL16 expressions were significantly higher in PTCs than benign or normal thyroid tissues. In the TCGA dataset for PTCs, a higher CXCL16 expression was associated with M2 macrophage- and angiogenesis-related genes and poor prognostic factors including a higher TNM staging and the BRAF V600E mutation. PTCs with a higher expression of 3-gene panel including CXCL16, AHNAK2, and THBS2 showed poor recurrence-free survivals than that of the lower expression group. Next, shCXCL16 was introduced into BHP10-3SCp cells to deplete the endogenous CXCL16, and then, the cells were subcutaneously injected to athymic mice. Tumors from the BHP10-3SCp shCXCL16 exhibited a delayed tumor growth with decreased numbers of ERG + endothelial cells and F4/80 + macrophages than those from the BHP10-3SCp control. CXCL16-related genes including AHNAK2 and THBS2 were downregulated in the tumors from the BHP10-3SCp shCXCL16 compared with that from the BHP10-3SCp control. In conclusion, a higher CXCL16 expression was associated with macrophage- and angiogenesis-related genes and aggressive phenotypes in PTC. Targeting CXCL16 may be a good therapeutic strategy for advanced thyroid cancer.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers

          Follicular thyroid carcinoma (FTC) and benign follicular adenoma (FA) are indistinguishable by preoperative diagnosis due to their similar histological features. Here we report the first RNA sequencing study of these tumors, with data for 30 minimally invasive FTCs (miFTCs) and 25 FAs. We also compared 77 classical papillary thyroid carcinomas (cPTCs) and 48 follicular variant of PTCs (FVPTCs) to observe the differences in their molecular properties. Mutations in H/K/NRAS, DICER1, EIF1AX, IDH1, PTEN, SOS1, and SPOP were identified in miFTC or FA. We identified a low frequency of fusion genes in miFTC (only one, PAX8–PPARG), but a high frequency of that in PTC (17.60%). The frequencies of BRAF V600E and H/K/NRAS mutations were substantially different in miFTC and cPTC, and those of FVPTC were intermediate between miFTC and cPTC. Gene expression analysis demonstrated three molecular subtypes regardless of their histological features, including Non–BRAF–Non–RAS (NBNR), as well as BRAF–like and RAS–like. The novel molecular subtype, NBNR, was associated with DICER1, EIF1AX, IDH1, PTEN, SOS1, SPOP, and PAX8–PPARG. The transcriptome of miFTC or encapsulated FVPTC was indistinguishable from that of FA, providing a molecular explanation for the similarly indolent behavior of these tumors. We identified upregulation of genes that are related to mitochondrial biogenesis including ESRRA and PPARGC1A in oncocytic follicular thyroid neoplasm. Arm-level copy number variations were correlated to histological and molecular characteristics. These results expanded the current molecular understanding of thyroid cancer and may lead to new diagnostic and therapeutic approaches to the disease.
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways.

            Fibroblasts are rich in the surrounding microenvironment of hepatocellular carcinoma (HCC) because most HCCs occur in fibrotic or cirrhotic livers. However, the role of cancer-associated fibroblasts (CAFs) in HCC metastasis remains obscure. Here, we reported that CAFs promote the migration and invasion of HCC cells in vitro and facilitate the HCC metastasis to the bone, brain and lung in NOD/SCID mice. The RayBio human chemokine antibody array revealed that CAFs secret higher levels of CCL2, CCL5, CCL7 and CXCL16 than peri-tumor fibroblasts. CCL2 and CCL5 increase the migration but not the invasion of HCC cells, while CCL7 and CXCL16 promote both migration and invasion of HCC cells. Moreover, CCL2 and CCL5 stimulate the activation of the hedgehog (Hh) pathway, while CCL7 and CXCL16 enhance the activity of the transforming growth factor-β (TGF-β) pathway in HCC cells. The neutralizing antibodies of chemokines notably attenuate the effect of CAFs on HCC metastasis and compromised the activation of Hh and TGF-β pathways in HCC cells. In summary, CAF-secreted CCL2, CCL5, CCL7 and CXCL16 promote HCC metastasis through the coordinate activation of Hh and TGF-β pathways in HCC cells.
              • Record: found
              • Abstract: found
              • Article: not found

              The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10.

              The novel CXC-chemokine ligand 16 (CXCL16) functions as transmembrane adhesion molecule on the surface of APCs and as a soluble chemoattractant for activated T cells. In this study, we elucidate the mechanism responsible for the conversion of the transmembrane molecule into a soluble chemokine and provide evidence for the expression and shedding of CXCL16 by fibroblasts and vascular cells. By transfection of human and murine CXCL16 in different cell lines, we show that soluble CXCL16 is constitutively generated by proteolytic cleavage of transmembrane CXCL16 resulting in reduced surface expression of the transmembrane molecule. Inhibition experiments with selective hydroxamate inhibitors against the disintegrin-like metalloproteinases a disintegrin and metalloproteinase domain (ADAM)10 and ADAM17 suggest that ADAM10, but not ADAM17, is involved in constitutive CXCL16 cleavage. In addition, the constitutive cleavage of transfected human CXCL16 was markedly reduced in embryonic fibroblasts generated from ADAM10-deficient mice. By induction of murine CXCL16 in ADAM10-deficient fibroblasts with IFN-gamma and TNF-alpha, we show that endogenous ADAM10 is indeed involved in the release of endogenous CXCL16. Finally, the shedding of endogenous CXCL16 could be reconstituted by retransfection of ADAM10-deficient cells with ADAM10. Analyzing the expression and release of CXCXL16 by cultured vascular cells, we found that IFN-gamma and TNF-alpha synergize to induce CXCL16 mRNA. The constitutive shedding of CXCL16 from the endothelial cell surface is blocked by inhibitors of ADAM10 and is independent of additional inhibition of ADAM17. Hence, during inflammation in the vasculature, ADAM10 may act as a CXCL16 sheddase and thereby finely control the expression and function of CXCL16 in the inflamed tissue.

                Author and article information

                Contributors
                swchomd@snu.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                16 September 2019
                16 September 2019
                2019
                : 9
                : 13288
                Affiliations
                [1 ]ISNI 0000 0001 0302 820X, GRID grid.412484.f, Department of Internal Medicine, , Seoul National University Hospital, ; 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
                [2 ]ISNI 0000 0004 0647 3511, GRID grid.410886.3, Department of Internal Medicine, CHA Bundang Medical Center, , CHA University, ; 59, Yatap-ro, Bundang-gu, Seongnam, Republic of Korea
                [3 ]ISNI 0000 0004 0647 3378, GRID grid.412480.b, Gong Wu Genomic Medicine Institute, Seoul National University Bundang Hospital, ; Dolma-ro 172, Seongnam, 13605 Republic of Korea
                [4 ]GRID grid.412479.d, Department of Pathology, , Boramae Medical Center, ; 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061 Republic of Korea
                [5 ]ISNI 0000 0004 0470 5905, GRID grid.31501.36, Department of Internal Medicine, , Seoul National University College of Medicine, ; 101, Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
                Author information
                http://orcid.org/0000-0002-3671-6364
                Article
                49613
                10.1038/s41598-019-49613-z
                6746802
                31527616
                f9d87f55-fec5-48ae-a750-bcd1b20af31f
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 June 2019
                : 28 August 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003625, Ministry of Health and Welfare (Ministry of Health, Welfare and Family Affairs);
                Award ID: HA17C0040
                Award ID: HI14C1277
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                thyroid cancer,cancer microenvironment,thyroid diseases
                Uncategorized
                thyroid cancer, cancer microenvironment, thyroid diseases

                Comments

                Comment on this article

                Related Documents Log