55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autoantigen TRIM21/Ro52 as a Possible Target for Treatment of Systemic Lupus Erythematosus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systemic lupus erythematosus (SLE) is a chronic, systemic, and autoimmune disease, whose etiology is still unknown. Although there has been progress in the treatment of SLE through the use of glucocorticoid and immunosuppressive drugs, these drugs have limited efficacy and pose significant risks of toxicity. Moreover, prognosis of patients with SLE has remained difficult to assess. TRIM21/Ro52/SS-A1, a 52-kDa protein, is an autoantigen recognized by antibodies in sera of patients with SLE and Sjögren's syndrome (SS), another systemic autoimmune disease, and anti-TRIM21 antibodies have been used as a diagnostic marker for decades. TRIM21 belongs to the tripartite motif-containing (TRIM) super family, which has been found to play important roles in innate and acquired immunity. Recently, TRIM21 has been shown to be involved in both physiological immune responses and pathological autoimmune processes. For example, TRIM21 ubiquitylates proteins of the interferon-regulatory factor (IRF) family and regulates type I interferon and proinflammatory cytokines. In this paper, we summarize molecular features of TRIM21 revealed so far and discuss its potential as an attractive therapeutic target for SLE.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.

          Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression "signature" served as a marker for more severe disease involving the kidneys, hematopoetic cells, and/or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays.

            The pleiotropic activities of interferons (IFNs) are mediated primarily through the transcriptional regulation of many downstream effector genes. The mRNA profiles from IFN-alpha, -beta, or -gamma treatments of the human fibrosarcoma cell line, HT1080, were determined by using oligonucleotide arrays with probe sets corresponding to more than 6,800 human genes. Among these were transcripts for known IFN-stimulated genes (ISGs), the expression of which were consistent with previous studies in which the particular ISG was characterized as responsive to either Type I (alpha, beta) or Type II (gamma) IFNs, or both. Importantly, many novel IFN-stimulated genes were identified that were diverse in their known biological functions. For instance, several novel ISGs were identified that are implicated in apoptosis (including RAP46/Bag-1, phospholipid scramblase, and hypoxia inducible factor-1alpha). Furthermore, several IFN-repressed genes also were identified. These results demonstrate the usefulness of oligonucleotide arrays in monitoring mammalian gene expression on a broad and unprecedented scale. In particular, these findings provide insights into the basic mechanisms of IFN actions and ultimately may contribute to better therapeutic uses for IFNs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study.

              To assess the safety of interleukin-6 receptor inhibition and to collect preliminary data on the clinical and immunologic efficacy of tocilizumab in patients with systemic lupus erythematosus (SLE). In an open-label phase I dosage-escalation study, 16 patients with mild-to-moderate disease activity were assigned to receive 1 of 3 doses of tocilizumab given intravenously every other week for 12 weeks (total of 7 infusions): 2 mg/kg in 4 patients, 4 mg/kg in 6 patients, or 8 mg/kg in 6 patients. Patients were then monitored for an additional 8 weeks. The infusions were well tolerated. Tocilizumab treatment led to dosage-related decreases in the absolute neutrophil count, with a median decrease of 38% in the 4 mg/kg dosage group and 56% in the 8 mg/kg dosage group. Neutrophil counts returned to normal after cessation of treatment. One patient was withdrawn from the study because of neutropenia. Infections occurred in 11 patients; none was associated with neutropenia. Disease activity showed significant improvement, with a decrease of > or =4 points in the modified Safety of Estrogens in Lupus Erythematosus National Assessment version of the Systemic Lupus Erythematosus Disease Activity Index score in 8 of the 15 evaluable patients. Arthritis improved in all 7 patients who had arthritis at baseline and resolved in 4 of them. Levels of anti-double-stranded DNA antibodies decreased by a median of 47% in patients in the 4 mg/kg and 8 mg/kg dosage groups, with a 7.8% decrease in their IgG levels. These changes, together with a significant decrease in the frequency of circulating plasma cells, suggest a specific effect of tocilizumab on autoantibody-producing cells. Although neutropenia may limit the maximum dosage of tocilizumab in patients with SLE, the observed clinical and serologic responses are promising and warrant further studies to establish the optimal dosing regimen and efficacy.
                Bookmark

                Author and article information

                Journal
                Int J Rheumatol
                Int J Rheumatol
                IJR
                International Journal of Rheumatology
                Hindawi Publishing Corporation
                1687-9260
                1687-9279
                2012
                4 June 2012
                : 2012
                : 718237
                Affiliations
                1Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
                2Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
                Author notes

                Academic Editor: Javier Martin

                Article
                10.1155/2012/718237
                3373075
                22701487
                f9d8e3bd-ed5a-4e89-8dfd-8734c2884d2c
                Copyright © 2012 Ryusuke Yoshimi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 January 2012
                : 1 April 2012
                : 2 April 2012
                Categories
                Review Article

                Rheumatology
                Rheumatology

                Comments

                Comment on this article