4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hazard resistance-based spatiotemporal risk analysis for distribution network outages during hurricanes

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blackouts in recent decades show an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhance power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors by directly applying the fragility function or failure probability of system components in time-sequential analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the time-varying failure probability of a component into a hazard resistance as a time-invariant value during the simulation of evolving hazards. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico during Hurricane Fiona 2022.

          Related collections

          Author and article information

          Journal
          18 January 2024
          Article
          2401.10418
          f9f66d78-d217-4bcd-a59f-e117d84c600d

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          10 pages, 10 figures
          eess.SY cs.SY

          Performance, Systems & Control
          Performance, Systems & Control

          Comments

          Comment on this article