46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Archaea Signal Recognition Particle Shows the Way

      review-article
      1 , * , 2
      Archaea
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Archaea SRP is composed of an SRP RNA molecule and two bound proteins named SRP19 and SRP54. Regulated by the binding and hydrolysis of guanosine triphosphates, the RNA-bound SRP54 protein transiently associates not only with the hydrophobic signal sequence as it emerges from the ribosomal exit tunnel, but also interacts with the membrane-associated SRP receptor (FtsY). Comparative analyses of the archaea genomes and their SRP component sequences, combined with structural and biochemical data, support a prominent role of the SRP RNA in the assembly and function of the archaea SRP. The 5e motif, which in eukaryotes binds a 72 kilodalton protein, is preserved in most archaea SRP RNAs despite the lack of an archaea SRP72 homolog. The primary function of the 5e region may be to serve as a hinge, strategically positioned between the small and large SRP domain, allowing the elongated SRP to bind simultaneously to distant ribosomal sites. SRP19, required in eukaryotes for initiating SRP assembly, appears to play a subordinate role in the archaea SRP or may be defunct. The N-terminal A region and a novel C-terminal R region of the archaea SRP receptor (FtsY) are strikingly diverse or absent even among the members of a taxonomic subgroup.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GenBank

          GenBank® is a comprehensive database that contains publicly available nucleotide sequences for more than 300 000 organisms named at the genus level or lower, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and accession numbers are assigned by GenBank® staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the National Center for Biotechnology Information (NCBI) Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The RCSB PDB information portal for structural genomics

            The RCSB Protein Data Bank (PDB) offers online tools, summary reports and target information related to the worldwide structural genomics initiatives from its portal at . There are currently three components to this site: Structural Genomics Initiatives contains information and links on each structural genomics site, including progress reports, target lists, target status, targets in the PDB and level of sequence redundancy; Targets provides combined target information, protocols and other data associated with protein structure determination; and Structures offers an assessment of the progress of structural genomics based on the functional coverage of the human genome by PDB structures, structural genomics targets and homology models. Functional coverage can be examined according to enzyme classification, gene ontology (biological process, cell component and molecular function) and disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The signal peptide

                Bookmark

                Author and article information

                Journal
                Archaea
                ARCH
                Archaea
                Hindawi Publishing Corporation
                1472-3646
                1472-3654
                2010
                2010
                28 June 2010
                : 2010
                : 485051
                Affiliations
                1Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
                2Department of Biology, Division of Business and Sciences, Jarvis Christian College, P.O. Box 1470, Hawkins, TX 75765, USA
                Author notes
                *Christian Zwieb: zwieb@ 123456uthct.edu

                Academic Editor: Jerry Eichler

                Article
                10.1155/2010/485051
                2905702
                20672053
                fa0088e7-76f3-40d2-9082-0d2dd967eebe
                Copyright © 2010 C. Zwieb and S. Bhuiyan.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 April 2010
                : 14 May 2010
                Categories
                Review Article

                Animal science & Zoology
                Animal science & Zoology

                Comments

                Comment on this article