4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolutionary Applications research highlights for issue 9: the ever-evolving field of agriculture

      research-article
      Evolutionary Applications
      Blackwell Publishing Ltd

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The earliest application of evolutionary theory, although unknowingly at the time, was artificial selection of crops and animals for food production. Ever increasing technical advances in breeding, genetic engineering and comparative genomics have since led to a rapid acceleration in the rate of such selection, although many of the basic principles underlying the process have remained the same over time. For example, whereas we used to inter-breed among genotypes and even species to generate standing genetic variation upon which to select, we can now introduce specific genes of interest directly into the preferred genetic background. Much of crop domestication historically has involved increased yield and size (for example of fruit or seed), and this has resulted in parallel and often convergent selection upon traits and even genes of interest. Recent work by Dorian Fuller and colleagues used archaeological plant remains from around the world to examine the parallel acquisition of so-called “domestication syndrome traits” across both plant species and regions (Fuller et al. 2014). The authors found differences in the rate of evolution among domestication traits, but also saw remarkably similar rates across regions over periods spanning several centuries to millennia. This work was part of a special feature in PNAS on “the modern view of domestication,” in which 25 researchers from across five fields came together to both discuss progress being made in research on domestication and to identify key challenges for the future (Larson et al. 2014). The feature highlights the role of past domestication in shaping the variation in agricultural species we observe today and suggests future studies should address the role that the contemporary environmental and ecological context may have played in influencing selection on traits in the past. Improved understanding of the evolutionary process as well as major technological advances means the pace of artificial selection has intensified and our ability to respond to changes in both the abiotic and biotic environment has improved greatly. Our ability to translate understanding of plant genetics and genomics into meaningful applications in crop science is discussed in a new piece by Pamela Ronald (Ronald 2014). The work emphasizes not only the great potential that marker assisted selection, genetic engineering, and genome editing hold in translational research, but also the great need to ensure such technologies benefit farmers in less well-developed countries. Of course the success of newly introduced agricultural varieties will depend on both the local environment and the subsequent evolution of other interacting species. As such, two new papers have focused on the importance of taking into account the evolutionary response of disease agents when guiding disease management practice in agriculture (Burdon et al. 2014; Zhan et al. 2014). For example, Jeremy Burdon and coauthors review the success of strategies such as stacking resistance genes, introducing partial or adult-only resistance, or using mixtures of host types to hinder pathogen evolution (Burdon et al. 2014). Similarly, Jiasui Zhan and collaborators discuss the importance of mimicking the spatial and temporal dynamics of natural host-pathogen coevolution when designing disease management strategies, and emphasize that resistance strategies with immediate short-term benefits are often the least durable in the long term (Zhan et al. 2014). Given the rapid potential for adaptation, many predictions regarding pest or pathogen evolution can be directly tested in the laboratory in order to inform better disease management. Recent work by Julia Hillung and colleagues examined the adaptation of a plant RNA virus to various ecotypes of Arabidopsis thaliana in order to determine the specificity and consequences of evolution on one host to infectivity on another. They use experimental evolution to show rapid increases in infectivity and virulence on the host background in which the virus has been adapted, but also demonstrate that some host types select for viral populations that are more generally infective to other types (Hillung et al. 2014). These results are particularly intriguing in that they suggest manipulation of host types in an agricultural setting could predictably alter the outcome of pathogen evolution. Such rapid evolution is not restricted to the laboratory; evidence from the Western corn rootworm on maize crops indicates that the pest is evolving resistance to the toxins produced by genetically engineered plants that were introduced into production only in 2003 (Gassmann et al. 2014). Importantly, the utility of evolutionary theory for agricultural practice is not limited to pest and pathogen interactions. The increasingly clear role of the microbiomes across the rhizosphere and phyllosphere suggest great potential for application of both community ecological and evolutionary thinking. Suzanne Donn and coauthors examined the changing soil microbiome of intensive wheat crops across years and found that, relative to soil in the absence of plants, rhizosphere communities changed substantially over time in the presence of plant roots and these temporal dynamics could be explained well based on the stage of plant development (Donn et al. 2014). Such knowledge about tightly coevolved plant-microbe interactions could help inform better management of soils and guide efforts to develop plant probiotics. Another attractive application of evolution to agriculture that has received recent attention is the incorporation of inclusive fitness theory. Toby Kiers and Ford Denison discuss ways in which artificial selection can be focused on improving cooperation among crop plants and the microbial symbionts with which they interact (Kiers and Denison 2014). For example, the authors suggest that the use of those crop types capable of imposing strong sanctions against “cheating” rhizobial bacteria strains (i.e. those that do not fix nitrogen as effectively) could increase the dominance of more mutualistic strains in the soil. Overall, although artificial selection has been central to agricultural practice since its dawn, we are still constantly improving our ability to speed up the selective process, incorporate adaptation across heterogeneous environments, and allow for a more responsive management program in the face of coevolving enemies and mutualists. As such, there remains great promise in our ability to increase crop yield and decrease the use of pesticides and fertilizers through the application of evolutionary thinking.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: found

          Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record.

          Recent increases in archaeobotanical evidence offer insights into the processes of plant domestication and agricultural origins, which evolved in parallel in several world regions. Many different crop species underwent convergent evolution and acquired domestication syndrome traits. For a growing number of seed crop species, these traits can be quantified by proxy from archaeological evidence, providing measures of the rates of change during domestication. Among domestication traits, nonshattering cereal ears evolved more quickly in general than seed size. Nevertheless, most domestication traits show similarly slow rates of phenotypic change over several centuries to millennia, and these rates were similar across different regions of origin. Crops reproduced vegetatively, including tubers and many fruit trees, are less easily documented in terms of morphological domestication, but multiple lines of evidence outline some patterns in the development of vegecultural systems across the New World and Old World tropics. Pathways to plant domestication can also be compared in terms of the cultural and economic factors occurring at the start of the process. Whereas agricultural societies have tended to converge on higher population densities and sedentism, in some instances cultivation began among sedentary hunter-gatherers whereas more often it was initiated by mobile societies of hunter-gatherers or herder-gatherers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Achieving sustainable plant disease management through evolutionary principles.

            Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Experimental evolution of an emerging plant virus in host genotypes that differ in their susceptibility to infection.

              This study evaluates the extent to which genetic differences among host individuals from the same species condition the evolution of a plant RNA virus. We performed a threefold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV-At17b), adapted to Arabidopsis thaliana ecotype Ler-0, was serially passaged in five genetically heterogeneous ecotypes of A. thaliana. After 15 passages we found that evolved viruses improved their fitness, showed higher infectivity and stronger virulence in their local host ecotypes. The genome of evolved lineages was sequenced and putative adaptive mutations identified. Host-driven convergent mutations have been identified. Evidences supported selection for increased translational efficiency. Next, we sought for the specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus populations. We found that some ecotypes were more permissive to infection than others, and that some evolved virus isolates were more specialist/generalist than others. The bipartite network linking ecotypes with evolved viruses was significantly nested but not modular, suggesting that hard-to-infect ecotypes were infected by generalist viruses whereas easy-to-infect ecotypes were infected by all viruses, as predicted by a gene-for-gene model of infection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
                Bookmark

                Author and article information

                Contributors
                Role: Research Highlights Associate Editor, Evolutionary Applications
                Journal
                Evol Appl
                Evol Appl
                eva
                Evolutionary Applications
                Blackwell Publishing Ltd (Oxford, UK )
                1752-4571
                1752-4571
                December 2014
                09 December 2014
                : 7
                : 10
                : 1159-1160
                Article
                10.1111/eva.12224
                4275088
                fa061890-a8a5-4da6-85b0-764649af2156
                © 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Research Highlights

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article