26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation

      , , ,
      Advances in Meteorology
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atmospheric profiles (temperature, pressure, and humidity) are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI) satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from satellite observations and those simulated by atmospheric models are compared. The models studied are the Nonhydrostatic ICosahedral Atmospheric Model (NICAM) and the National Center for Environmental Protection/Department Of Energy (NCEP/DOE). The satellite observations are from the Terra/Moderate Resolution Imaging Spectroradiometer (Terra/MODIS) satellite. The simulations performed are obtained through a forward radiative transfer calculation procedure. The resulting radiances are transformed into the upper tropospheric brightness temperature (UTBT) and relative humidity (UTRH). The discrepancies between the simulated data and the observations are analyzed. These analyses show that both the NICAM and the NCEP/DOE simulated UTBT and UTRH have comparable distribution patterns. However the simulations’ differences with the observations are generally lower with the NCEP/DOE than with the NICAM. The NCEP/DOE model outputs very often overestimate the UTBT and therefore present a drier upper troposphere. The impact of the lower troposphere instability (dry convection) on the upper tropospheric moisture and the consequences on the models’ results are evaluated through a thunderstorm and moisture predictor (the K-stability index). The results obtained show a positive relation between the instability and the root mean square error (RMSE: observation versus models). The study of the impact of convective clouds shows that the area covered by these clouds increases with the humidity of the upper troposphere in clear sky and above low clouds, and at the same time, the error between the observations and the models also increases. The impact of the above low clouds heat distribution on the models is studied through the relation between the low clouds cover and their effective emissivity. The models’ error appears to be high at midrange effective emissivity clouds.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: not found
          • Article: not found

          Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.

            A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere

                Bookmark

                Author and article information

                Journal
                Advances in Meteorology
                Advances in Meteorology
                Hindawi Limited
                1687-9309
                1687-9317
                2011
                2011
                : 2011
                :
                : 1-15
                Article
                10.1155/2011/872857
                fa067989-6427-49ee-8854-c2558c19bddc
                © 2011

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article