Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Background: Current knowledge about Chornobyl-related thyroid cancer risks comes from ecological studies based on grouped doses, case–control studies, and studies of prevalent cancers.Objective: To address this limitation, we evaluated the dose–response relationship for incident thyroid cancers using measurement-based individual iodine-131 (I-131) thyroid dose estimates in a prospective analytic cohort study.Methods: The cohort consists of individuals < 18 years of age on 26 April 1986 who resided in three contaminated oblasts (states) of Ukraine and underwent up to four thyroid screening examinations between 1998 and 2007 (n = 12,514). Thyroid doses of I-131 were estimated based on individual radioactivity measurements taken within 2 months after the accident, environmental transport models, and interview data. Excess radiation risks were estimated using Poisson regression models.Results: Sixty-five incident thyroid cancers were diagnosed during the second through fourth screenings and 73,004 person-years (PY) of observation. The dose–response relationship was consistent with linearity on relative and absolute scales, although the excess relative risk (ERR) model described data better than did the excess absolute risk (EAR) model. The ERR per gray was 1.91 [95% confidence interval (CI), 0.43–6.34], and the EAR per 104 PY/Gy was 2.21 (95% CI, 0.04–5.78). The ERR per gray varied significantly by oblast of residence but not by time since exposure, use of iodine prophylaxis, iodine status, sex, age, or tumor size.Conclusions: I-131–related thyroid cancer risks persisted for two decades after exposure, with no evidence of decrease during the observation period. The radiation risks, although smaller, are compatible with those of retrospective and ecological post-Chornobyl studies.

      Related collections

      Most cited references 46

      • Record: found
      • Abstract: found
      • Article: not found

      Risk of thyroid cancer after exposure to 131I in childhood.

      After the Chernobyl nuclear power plant accident in April 1986, a large increase in the incidence of childhood thyroid cancer was reported in contaminated areas. Most of the radiation exposure to the thyroid was from iodine isotopes, especially 131I. We carried out a population-based case-control study of thyroid cancer in Belarus and the Russian Federation to evaluate the risk of thyroid cancer after exposure to radioactive iodine in childhood and to investigate environmental and host factors that may modify this risk. We studied 276 case patients with thyroid cancer through 1998 and 1300 matched control subjects, all aged younger than 15 years at the time of the accident. Individual doses were estimated for each subject based on their whereabouts and dietary habits at the time of the accident and in following days, weeks, and years; their likely stable iodine status at the time of the accident was also evaluated. Data were analyzed by conditional logistic regression using several different models. All statistical tests were two-sided. A strong dose-response relationship was observed between radiation dose to the thyroid received in childhood and thyroid cancer risk (P<.001). For a dose of 1 Gy, the estimated odds ratio of thyroid cancer varied from 5.5 (95% confidence interval [CI] = 3.1 to 9.5) to 8.4 (95% CI = 4.1 to 17.3), depending on the risk model. A linear dose-response relationship was observed up to 1.5-2 Gy. The risk of radiation-related thyroid cancer was three times higher in iodine-deficient areas (relative risk [RR]= 3.2, 95% CI = 1.9 to 5.5) than elsewhere. Administration of potassium iodide as a dietary supplement reduced this risk of radiation-related thyroid cancer by a factor of 3 (RR = 0.34, 95% CI = 0.1 to 0.9, for consumption of potassium iodide versus no consumption). Exposure to (131)I in childhood is associated with an increased risk of thyroid cancer. Both iodine deficiency and iodine supplementation appear to modify this risk. These results have important public health implications: stable iodine supplementation in iodine-deficient populations may substantially reduce the risk of thyroid cancer related to radioactive iodines in case of exposure to radioactive iodines in childhood that may occur after radiation accidents or during medical diagnostic and therapeutic procedures.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Thyroid Cancer after Exposure to External Radiation: A Pooled Analysis of Seven Studies

          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies.

          The thyroid gland of children is especially vulnerable to the carcinogenic action of ionizing radiation. To provide insights into various modifying influences on risk, seven major studies with organ doses to individual subjects were evaluated. Five cohort studies (atomic bomb survivors, children treated for tinea capitis, two studies of children irradiated for enlarged tonsils, and infants irradiated for an enlarged thymus gland) and two case-control studies (patients with cervical cancer and childhood cancer) were studied. The combined studies include almost 120,000 people (approximately 58,000 exposed to a wide range of doses and 61,000 nonexposed subjects), nearly 700 thyroid cancers and 3,000,000 person years of follow-up. For persons exposed to radiation before age 15 years, linearity best described the dose response, even down to 0.10 Gy. At the highest doses (> 10 Gy), associated with cancer therapy, there appeared to be a decrease or leveling of risk. For childhood exposures, the pooled excess relative risk per Gy (ERR/Gy) was 7.7 (95% CI = 2.1, 28.7) and the excess absolute risk per 10(4) PY Gy (EAR/10(4) PY Gy) was 4.4 (95% CI = 1.9, 10.1). The attributable risk percent (AR%) at 1 Gy was 88%. However, these summary estimates were affected strongly by age at exposure even within this limited age range. The ERR was greater (P = 0.07) for females than males, but the findings from the individual studies were not consistent. The EAR was higher among women, reflecting their higher rate of naturally occurring thyroid cancer. The distribution of ERR over time followed neither a simple multiplicative nor an additive pattern in relation to background occurrence. Only two cases were seen within 5 years of exposure. The ERR began to decline about 30 years after exposure but was still elevated at 40 years. Risk also decreased significantly with increasing age at exposure, with little risk apparent after age 20 years. Based on limited data, there was a suggestion that spreading dose over time (from a few days to > 1 year) may lower risk, possibly due to the opportunity for cellular repair mechanisms to operate. The thyroid gland in children has one of the highest risk coefficients of any organ and is the only tissue with convincing evidence for risk about 1.10 Gy.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
            [2 ]Institute of Endocrinology and Metabolism, Kyiv, Ukraine
            [3 ]Department of Epidemiology and Biostatistics, University of California–San Francisco, San Francisco, California, USA
            [4 ]Department of Medicine, The Thyroid Clinic, College of Physicians and Surgeons, Columbia University, New York, New York, USA
            [5 ]Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
            [6 ]Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
            Author notes
            Address correspondence to A.V. Brenner, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, MS 7238, 6120 Executive Blvd., Bethesda, MD 20892-7238 USA. Telephone: (301) 402-8680. Fax: (301) 402-0207. E-mail: brennera@ 123456mail.nih.gov

            It is with great sadness that we report the death of our colleague Elaine Ron while the manuscript was under review.

            Journal
            Environ Health Perspect
            EHP
            Environmental Health Perspectives
            National Institute of Environmental Health Sciences
            0091-6765
            1552-9924
            17 March 2011
            01 July 2011
            : 119
            : 7
            : 933-939
            3222994
            21406336
            1002674
            10.1289/ehp.1002674

            This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Article

            Comments

            Comment on this article