29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clinical implementation of a commercial multileaf collimator: dosimetry, networking, simulation, and quality assurance.

      International Journal of Radiation Oncology, Biology, Physics
      Calibration, Computer Simulation, Equipment Design, Particle Accelerators, Quality Assurance, Health Care, Radiotherapy Dosage, Radiotherapy, Computer-Assisted, instrumentation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical implementation of multileaf collimation (MLC) includes commissioning (including leaf calibration), dosimetric measurements (penumbra, transmission, calculation parameters), shaping methods, networking for file transfer, verification simulation, and development of a quality assurance (QA) program. Differences of MLC and alloy shaping in terms of penumbra and stair-step effects must be analyzed. Leaf positions are calibrated to light field. The resultant decrement line, penumbras, leaf transmission data, and isodoses in various planes were measured with film. Penumbra was measured for straight edges and corners, in various media. Ion chambers were used to measure effects of MLC on output, scatter, and depth dose. We maintain midleaf intersection criteria. MLC fields are set 7 mm beyond planning target volumes. After shaping by vendor software or by our three-dimensional planning system, files are transferred to the MLC workstation by means of sharing software, interface cards, and cabling. A MLC emulator was constructed for simulation. Our QA program includes file checks, monthly checks (leaf position accuracy and interlock tests), and annual review. We found the MLC leaf position (light field) corresponds to decrement lines ranging from 50 to 59%. Transmission through MLC (1.5-2.5%) is less than alloy (3.5%). Multileaf penumbra is slightly wider than for alloy. Relative penumbra did not increase in the lung, and composite field dosimetry exhibited negligible differences compared with alloy. Verification simulations provide diagnostic image quality hard copies of the MLC fields. Monitor unit parameters used for alloy held for MLC. Clinical implementation for MLC as a block replacement was conducted on a site-by-site basis. Time studies indicate significant (25%) in-room time reductions. Through imaging and dosimetric analysis, the accuracy of field delivery has increased with MLC. The most significant impact of MLC is the ability to increase the number of daily treatment fields, thereby reducing normal tissue dosing, which is vital for dose escalation.

          Related collections

          Author and article information

          Comments

          Comment on this article