+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SARS-CoV-2 Transmission and Infection Among Attendees of an Overnight Camp — Georgia, June 2020


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Limited data are available about transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), among youths. During June 17–20, an overnight camp in Georgia (camp A) held orientation for 138 trainees and 120 staff members; staff members remained for the first camp session, scheduled during June 21–27, and were joined by 363 campers and three senior staff members on June 21. Camp A adhered to the measures in Georgia’s Executive Order* that allowed overnight camps to operate beginning on May 31, including requiring all trainees, staff members, and campers to provide documentation of a negative viral SARS-CoV-2 test ≤12 days before arriving. Camp A adopted most † components of CDC’s Suggestions for Youth and Summer Camps § to minimize the risk for SARS-CoV-2 introduction and transmission. Measures not implemented were cloth masks for campers and opening windows and doors for increased ventilation in buildings. Cloth masks were required for staff members. Camp attendees were cohorted by cabin and engaged in a variety of indoor and outdoor activities, including daily vigorous singing and cheering. On June 23, a teenage staff member left camp A after developing chills the previous evening. The staff member was tested and reported a positive test result for SARS-CoV-2 the following day (June 24). Camp A officials began sending campers home on June 24 and closed the camp on June 27. On June 25, the Georgia Department of Public Health (DPH) was notified and initiated an investigation. DPH recommended that all attendees be tested and self-quarantine, and isolate if they had a positive test result. A line list of all attendees was obtained and matched to laboratory results from the State Electronic Notifiable Disease Surveillance System ¶ and data from DPH case investigations. A COVID-19 case associated with the camp A outbreak was defined as a positive viral SARS-CoV-2 test** in a camp A attendee from a specimen collected or reported to DPH from the first day at camp A (June 17 for staff members and trainees; June 21 for campers) through 14 days after leaving camp A (trainees left on June 21; staff members and campers left during June 24–June 27). Out-of-state attendees (27) were excluded from this preliminary analysis. Attack rates were calculated by dividing the number of persons with positive test results by the total number of Georgia attendees, including those who did not have testing results, because negative test results are not consistently reported in Georgia. A total of 597 Georgia residents attended camp A. Median camper age was 12 years (range = 6–19 years), and 53% (182 of 346) were female. The median age of staff members and trainees was 17 years (range = 14–59 years), and 59% (148 of 251) were female. Test results were available for 344 (58%) attendees; among these, 260 (76%) were positive. The overall attack rate was 44% (260 of 597), 51% among those aged 6–10 years, 44% among those aged 11–17 years, and 33% among those aged 18–21 years (Table). Attack rates increased with increasing length of time spent at the camp, with staff members having the highest attack rate (56%). During June 21–27, occupancy of the 31 cabins averaged 15 persons per cabin (range = 1–26); median cabin attack rate was 50% (range = 22%–70%) among 28 cabins that had one or more cases. Among 136 cases with available symptom data, 36 (26%) patients reported no symptoms; among 100 (74%) who reported symptoms, those most commonly reported were subjective or documented fever (65%), headache (61%), and sore throat (46%). TABLE SARS-CoV-2 attack rates* , † among attendees of an overnight camp, by selected characteristics ― Georgia, June 2020 Characteristic No.§ No. positive Attack rate, % Total 597 260 44 Sex Male 267 123 46 Female 330 137 42 Age group, yrs 6–10 100 51 51 11–17 409 180 44 18–21 81 27 33 22–59 7 2 29 Type of attendee (dates attended camp) Trainee (June 17–21) 134 26 19 Staff member (June 17–27¶,**) 117 66 56 Camper (June 21–27¶) 346 168 49 Cabin size during camp†† (no. of persons/cabin)§§ Small (1–3) 13 5 38 Medium (7–13) 75 29 39 Large (16–26) 375 200 53 Abbreviation: COVID-19 = coronavirus disease 2019. * Although positive and negative test results for Georgia residents are reportable in the state of Georgia, negative results are not consistently reported. Attack rates were calculated by dividing the number of persons with a positive test result reported to the Georgia Department of Public Health (DPH) by the total number of Georgia attendees, including those who did not provide testing results. † A COVID-19 case associated with the camp outbreak was defined as a positive viral SARS-CoV-2 test in an attendee from a specimen collected or reported to DPH from the first day at camp A (June 17 for staff members, including trainees; June 21 for campers) through 14 days after leaving camp A (trainees left on June 21; staff members and campers left during June 24–June 27). § Out-of-state attendees’ (n = 27; 4%) test results were not reported to DPH and therefore were not included in this analysis. ¶ Camp departures began June 24 and were completed June 27. ** Three staff members arrived June 21. †† Among camp attendees during June 21–27 (n = 463). §§ No cabins included 4–6 or 14–15 persons. The findings in this report are subject to at least three limitations. First, attack rates presented are likely an underestimate because cases might have been missed among persons not tested or whose test results were not reported. Second, given the increasing incidence of COVID-19 in Georgia in June and July, some cases might have resulted from transmission occurring before or after camp attendance. †† Finally, it was not possible to assess individual adherence to COVID-19 prevention measures at camp A, including physical distancing between, and within, cabin cohorts and use of cloth masks, which were not required for campers. These findings demonstrate that SARS-CoV-2 spread efficiently in a youth-centric overnight setting, resulting in high attack rates among persons in all age groups, despite efforts by camp officials to implement most recommended strategies to prevent transmission. Asymptomatic infection was common and potentially contributed to undetected transmission, as has been previously reported ( 1 – 4 ). This investigation adds to the body of evidence demonstrating that children of all ages are susceptible to SARS-CoV-2 infection ( 1 – 3 ) and, contrary to early reports ( 5 , 6 ), might play an important role in transmission ( 7 , 8 ). The multiple measures adopted by the camp were not sufficient to prevent an outbreak in the context of substantial community transmission. Relatively large cohorts sleeping in the same cabin and engaging in regular singing and cheering likely contributed to transmission ( 9 ). Use of cloth masks, which has been shown to reduce the risk for infection ( 10 ), was not universal. An ongoing investigation will further characterize specific exposures associated with infection, illness course, and any secondary transmission to household members. Physical distancing and consistent and correct use of cloth masks should be emphasized as important strategies for mitigating transmission in congregate settings.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China

          To identify the epidemiological characteristics and transmission patterns of pediatric patients with the 2019 novel coronavirus disease (COVID-19) in China.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Coronavirus Disease 2019 in Children — United States, February 12–April 2, 2020

            On April 6, 2020, this report was posted online as an MMWR Early Release. As of April 2, 2020, the coronavirus disease 2019 (COVID-19) pandemic has resulted in >890,000 cases and >45,000 deaths worldwide, including 239,279 cases and 5,443 deaths in the United States ( 1 , 2 ). In the United States, 22% of the population is made up of infants, children, and adolescents aged * Includes infants, children, and adolescents. † Excludes 23 cases in children aged <18 years with missing report date. § Date of report available starting February 24, 2020; reported cases include any with onset on or after February 12, 2020. The figure is a combination epidemiological curve and line graph showing 2,549 cases of COVID-19 in children aged <18 years in the United States, by date reported to CDC during February 24–April 2, 2020. Among all 2,572 COVID-19 cases in children aged <18 years, the median age was 11 years (range 0–17 years). Nearly one third of reported pediatric cases (813; 32%) occurred in children aged 15–17 years, followed by those in children aged 10–14 years (682; 27%). Among younger children, 398 (15%) occurred in children aged <1 year, 291 (11%) in children aged 1–4 years, and 388 (15%) in children aged 5–9 years. Among 2,490 pediatric COVID-19 cases for which sex was known, 1,408 (57%) occurred in males; among cases in adults aged ≥18 years for which sex was known, 53% (75,450 of 143,414) were in males. Among 184 (7.2%) cases in children aged <18 years with known exposure information, 16 (9%) were associated with travel and 168 (91%) had exposure to a COVID-19 patient in the household or community. Data on signs and symptoms of COVID-19 were available for 291 of 2,572 (11%) pediatric cases and 10,944 of 113,985 (9.6%) cases among adults aged 18–64 years (Table). Whereas fever (subjective or documented), cough, and shortness of breath were commonly reported among adult patients aged 18–64 years (93% reported at least one of these), these signs and symptoms were less frequently reported among pediatric patients (73%). Among those with known information on each symptom, 56% of pediatric patients reported fever, 54% reported cough, and 13% reported shortness of breath, compared with 71%, 80%, and 43%, respectively, reporting these signs and symptoms among patients aged 18–64 years. Myalgia, sore throat, headache, and diarrhea were also less commonly reported by pediatric patients. Fifty-three (68%) of the 78 pediatric cases reported not to have fever, cough, or shortness of breath had no symptoms reported, but could not be classified as asymptomatic because of incomplete symptom information. One (1.3%) additional pediatric patient with a positive test result for SARS-CoV-2 was reported to be asymptomatic. TABLE Signs and symptoms among 291 pediatric (age <18 years) and 10,944 adult (age 18–64 years) patients* with laboratory-confirmed COVID-19 — United States, February 12–April 2, 2020 Sign/Symptom No. (%) with sign/symptom Pediatric Adult Fever, cough, or shortness of breath† 213 (73) 10,167 (93) Fever§ 163 (56) 7,794 (71) Cough 158 (54) 8,775 (80) Shortness of breath 39 (13) 4,674 (43) Myalgia 66 (23) 6,713 (61) Runny nose¶ 21 (7.2) 757 (6.9) Sore throat 71 (24) 3,795 (35) Headache 81 (28) 6,335 (58) Nausea/Vomiting 31 (11) 1,746 (16) Abdominal pain¶ 17 (5.8) 1,329 (12) Diarrhea 37 (13) 3,353 (31) *Cases were included in the denominator if they had a known symptom status for fever, cough, shortness of breath, nausea/vomiting, and diarrhea. Total number of patients by age group: <18 years (N = 2,572), 18–64 years (N = 113,985). † Includes all cases with one or more of these symptoms. § Patients were included if they had information for either measured or subjective fever variables and were considered to have a fever if “yes” was indicated for either variable. ¶ Runny nose and abdominal pain were less frequently completed than other symptoms; therefore, percentages with these symptoms are likely underestimates. Information on hospitalization status was available for 745 (29%) cases in children aged <18 years and 35,061 (31%) cases in adults aged 18–64 years. Among children with COVID-19, 147 (estimated range = 5.7%–20%) were reported to be hospitalized, with 15 (0.58%–2.0%) admitted to an ICU (Figure 2). Among adults aged 18–64 years, the percentages of patients who were hospitalized (10%–33%), including those admitted to an ICU (1.4%–4.5%), were higher. Children aged <1 year accounted for the highest percentage (15%–62%) of hospitalization among pediatric patients with COVID-19. Among 95 children aged <1 year with known hospitalization status, 59 (62%) were hospitalized, including five who were admitted to an ICU. The percentage of patients hospitalized among those aged 1–17 years was lower (estimated range = 4.1%–14%), with little variation among age groups (Figure 2). FIGURE 2 COVID-19 cases among children* aged <18 years, among those with known hospitalization status (N = 745),† by age group and hospitalization status — United States, February 12–April 2, 2020 Abbreviation: ICU = intensive care unit. * Includes infants, children, and adolescents. † Number of children missing hospitalization status by age group: <1 year (303 of 398; 76%); 1–4 years (189 of 291; 65%); 5–9 years (275 of 388; 71%); 10–14 years (466 of 682; 68%); 15–17 years (594 of 813; 73%). The figure is a bar chart showing 745 U.S. COVID-19 cases among children aged <18 years with known hospitalization status, by age group and hospitalization status during February 12–April 2, 2020. Among 345 pediatric cases with information on underlying conditions, 80 (23%) had at least one underlying condition. The most common underlying conditions were chronic lung disease (including asthma) (40), cardiovascular disease (25), and immunosuppression (10). Among the 295 pediatric cases for which information on both hospitalization status and underlying medical conditions was available, 28 of 37 (77%) hospitalized patients, including all six patients admitted to an ICU, had one or more underlying medical condition; among 258 patients who were not hospitalized, 30 (12%) patients had underlying conditions. Three deaths were reported among the pediatric cases included in this analysis; however, review of these cases is ongoing to confirm COVID-19 as the likely cause of death. Discussion Among 149,082 U.S. cases of COVID-19 reported as of April 2, 2020, for which age was known, 2,572 (1.7%) occurred in patients aged <18 years. In comparison, persons aged <18 years account for 22% of the U.S. population ( 3 ). Although infants <1 year accounted for 15% of pediatric COVID-19 cases, they remain underrepresented among COVID-19 cases in patients of all ages (393 of 149,082; 0.27%) compared with the percentage of the U.S. population aged <1 year (1.2%) ( 3 ). Relatively few pediatric COVID-19 cases were hospitalized (5.7%–20%; including 0.58%–2.0% admitted to an ICU), consistent with previous reports that COVID-19 illness often might have a mild course among younger patients ( 4 , 5 ). Hospitalization was most common among pediatric patients aged <1 year and those with underlying conditions. In addition, 73% of children for whom symptom information was known reported the characteristic COVID-19 signs and symptoms of fever, cough, or shortness of breath. These findings are largely consistent with a report on pediatric COVID-19 patients aged <16 years in China, which found that only 41.5% of pediatric patients had fever, 48.5% had cough, and 1.8% were admitted to an ICU ( 4 ). A second report suggested that although pediatric COVID-19 patients infrequently have severe outcomes, the infection might be more severe among infants ( 5 ). In the current analysis, 59 of 147 pediatric hospitalizations, including five of 15 pediatric ICU admissions, were among children aged <1 year; however, most reported U.S. cases in infants had unknown hospitalization status. In this preliminary analysis of U.S. pediatric COVID-19 cases, a majority (57%) of patients were males. Several studies have reported a majority of COVID-19 cases among males ( 4 , 9 ), and an analysis of 44,000 COVID-19 cases in patients of all ages in China reported a higher case-fatality rate among men than among women ( 10 ). However, the same report, as well as a separate analysis of 2,143 pediatric COVID-19 cases from China, detected no substantial difference in the number of cases among males and females ( 5 , 10 ). Reasons for any potential difference in COVID-19 incidence or severity between males and females are unknown. In the present analysis, the predominance of males in all pediatric age groups, including patients aged <1 year, suggests that biologic factors might play a role in any differences in COVID-19 susceptibility by sex. The findings in this report are subject to at least four limitations. First, because of the high workload associated with COVID-19 response activities on local, state, and territorial public health personnel, a majority of pediatric cases were missing data on disease symptoms, severity, or underlying conditions. Data for many variables are unlikely to be missing at random, and as such, these results must be interpreted with caution. Because of the high percentage of missing data, statistical comparisons could not be conducted. Second, because many cases occurred only days before publication of this report, the outcome for many patients is unknown, and this analysis might underestimate severity of disease or symptoms that manifested later in the course of illness. Third, COVID-19 testing practices differ across jurisdictions and might also differ across age groups. In many areas, prioritization of testing for severely ill patients likely occurs, which would result in overestimation of the percentage of patients with COVID-19 infection who are hospitalized (including those treated in an ICU) among all age groups. Finally, this analysis compares clinical characteristics of pediatric cases (persons aged <18 years) with those of cases among adults aged 18–64 years. Severe COVID-19 disease appears to be more common among adults at the high end of this age range ( 6 ), and therefore cases in young adults might be more similar to those among children than suggested by the current analysis. As the number of COVID-19 cases continues to increase in many parts of the United States, it will be important to adapt COVID-19 surveillance strategies to maintain collection of critical case information without overburdening jurisdiction health departments. National surveillance will increasingly be complemented by focused surveillance systems collecting comprehensive case information on a subset of cases across various health care settings. These systems will provide detailed information on the evolving COVID-19 incidence and risk factors for infection and severe disease. More systematic and detailed collection of underlying condition data among pediatric patients would be helpful to understand which children might be at highest risk for severe COVID-19 illness. This preliminary examination of characteristics of COVID-19 disease among children in the United States suggests that children do not always have fever or cough as reported signs and symptoms. Although most cases reported among children to date have not been severe, clinicians should maintain a high index of suspicion for COVID-19 infection in children and monitor for progression of illness, particularly among infants and children with underlying conditions. However, these findings must be interpreted with caution because of the high percentage of cases missing data on important characteristics. Because persons with asymptomatic and mild disease, including children, are likely playing a role in transmission and spread of COVID-19 in the community, social distancing and everyday preventive behaviors are recommended for persons of all ages to slow the spread of the virus, protect the health care system from being overloaded, and protect older adults and persons of any age with serious underlying medical conditions. Recommendations for reducing the spread of COVID-19 by staying at home and practicing strategies such as respiratory hygiene, wearing cloth face coverings when around others, and others are available on CDC’s coronavirus website at https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html. Summary What is already known about this topic? Data from China suggest that pediatric coronavirus disease 2019 (COVID-19) cases might be less severe than cases in adults and that children (persons aged <18 years) might experience different symptoms than adults. What is added by this report? In this preliminary description of pediatric U.S. COVID-19 cases, relatively few children with COVID-19 are hospitalized, and fewer children than adults experience fever, cough, or shortness of breath. Severe outcomes have been reported in children, including three deaths. What are the implications for public health practice? Pediatric COVID-19 patients might not have fever or cough. Social distancing and everyday preventive behaviors remain important for all age groups because patients with less serious illness and those without symptoms likely play an important role in disease transmission.
              • Record: found
              • Abstract: found
              • Article: found

              COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study

              Summary Background To date, few data on paediatric COVID-19 have been published, and most reports originate from China. This study aimed to capture key data on children and adolescents with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across Europe to inform physicians and health-care service planning during the ongoing pandemic. Methods This multicentre cohort study involved 82 participating health-care institutions across 25 European countries, using a well established research network—the Paediatric Tuberculosis Network European Trials Group (ptbnet)—that mainly comprises paediatric infectious diseases specialists and paediatric pulmonologists. We included all individuals aged 18 years or younger with confirmed SARS-CoV-2 infection, detected at any anatomical site by RT-PCR, between April 1 and April 24, 2020, during the initial peak of the European COVID-19 pandemic. We explored factors associated with need for intensive care unit (ICU) admission and initiation of drug treatment for COVID-19 using univariable analysis, and applied multivariable logistic regression with backwards stepwise analysis to further explore those factors significantly associated with ICU admission. Findings 582 individuals with PCR-confirmed SARS-CoV-2 infection were included, with a median age of 5·0 years (IQR 0·5–12·0) and a sex ratio of 1·15 males per female. 145 (25%) had pre-existing medical conditions. 363 (62%) individuals were admitted to hospital. 48 (8%) individuals required ICU admission, 25 (4%) mechanical ventilation (median duration 7 days, IQR 2–11, range 1–34), 19 (3%) inotropic support, and one (<1%) extracorporeal membrane oxygenation. Significant risk factors for requiring ICU admission in multivariable analyses were being younger than 1 month (odds ratio 5·06, 95% CI 1·72–14·87; p=0·0035), male sex (2·12, 1·06–4·21; p=0·033), pre-existing medical conditions (3·27, 1·67–6·42; p=0·0015), and presence of lower respiratory tract infection signs or symptoms at presentation (10·46, 5·16–21·23; p<0·0001). The most frequently used drug with antiviral activity was hydroxychloroquine (40 [7%] patients), followed by remdesivir (17 [3%] patients), lopinavir–ritonavir (six [1%] patients), and oseltamivir (three [1%] patients). Immunomodulatory medication used included corticosteroids (22 [4%] patients), intravenous immunoglobulin (seven [1%] patients), tocilizumab (four [1%] patients), anakinra (three [1%] patients), and siltuximab (one [<1%] patient). Four children died (case-fatality rate 0·69%, 95% CI 0·20–1·82); at study end, the remaining 578 were alive and only 25 (4%) were still symptomatic or requiring respiratory support. Interpretation COVID-19 is generally a mild disease in children, including infants. However, a small proportion develop severe disease requiring ICU admission and prolonged ventilation, although fatal outcome is overall rare. The data also reflect the current uncertainties regarding specific treatment options, highlighting that additional data on antiviral and immunomodulatory drugs are urgently needed. Funding ptbnet is supported by Deutsche Gesellschaft für Internationale Zusammenarbeit.

                Author and article information

                MMWR Morb Mortal Wkly Rep
                MMWR Morb. Mortal. Wkly. Rep
                Morbidity and Mortality Weekly Report
                Centers for Disease Control and Prevention
                07 August 2020
                07 August 2020
                : 69
                : 31
                : 1023-1025
                Georgia Department of Public Health; CDC COVID-19 Response Team; Epidemic Intelligence Service, CDC.
                Author notes
                Corresponding author: Christine M. Szablewski, christine.szablewski@ 123456dph.ga.gov .

                All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

                Full Report


                Comment on this article